Dementia is most commonly caused by Alzheimer's disease (AD) pathology (plaques and tangles);however AD pathology is very commonly mixed with other pathologies which further lower cognition and increase the odds of dementia in older persons.TDP-43 pathology, a marker of an uncommon presenile dementia syndrome called Frontotemporal Lobar Degeneration (FTLD-TDP), has recently been identified in a large proportion of older brains especially those with AD pathology. The role of TDP-43 pathology in aging and AD is unknown but there is increasing evidence that it is detrimental. It is not known whether TDP-43 pathology represents a third pathology of AD or a separate coexisting disease. Our overarching hypothesis is that age-related TDP-43 pathology represents a separate pathologic process associated with a dementia syndrome with a distinct cognitive phenotype and specific genetic risk factors that are separate from AD. We propose to address these hypotheses by performing a epidemiologic study of TDP-43 pathology in aging and AD, by leveraging existing clinical, pathologic, and genetic data from 2 epidemiologic clinical-pathologic cohort studies, and collecting new TDP-43 pathology data on 1400 brains. First, using a series of analytic models, we propose to test whether TDP-43 pathology is a separate aging pathology or mediates the effects of AD pathology. Second, we propose to investigate whether TDP-43 pathology in aging is associated with a specific cognitive profile and separately increases the rate of cognitive decline. We also propose to examine the role of TDP-43 pathology in older persons without dementia, and separately examine TDP-43 in older persons without AD pathology. If TDP-43 pathology represents coexisting FTLD-TDP, the clinical profile may show early and prominent executive and language impairment rather than an AD phenotype in each of these groups. Third because the oldest-old are the fastest growing segment of the population and because AD pathology is not as relevant in this age-group, we propose to investigate the role of TDP-43 pathology in this important subgroup of older persons. Finally in the last two aims we propose to investigate the association of genetic polymorphisms (SNPs) with TDP-43 pathology and cognition. We propose that SNPs associated with FTLD are related to TDP-43 pathology in aging;whereas SNPs associated with clinical AD are related to AD pathology in aging. We present compelling preliminary data in the support of these aims. Results from these proposed studies will fill an important gap in scientific knowledge and are likely to impact future studies of prevention and treatment of cognitive impairment and dementia in aging.

Public Health Relevance

The number of older persons in society is rapidly expanding and creating a looming epidemic of cognitive impairment and dementia. There is compelling data that TDP-43 pathology, a recently recognized age-related pathology which often coexists with AD pathology, is strongly and separately related to cognitive impairment and dementia in the old and oldest-old. Data derived from the proposed clinical, pathologic and genetic studies of TDP-43 pathology in aging will fill an important gap in scientific knowledge and are likely to significantly alter the course of future research in the prevention and treatment of cognitive impairment and dementia in aging.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Anderson, Dallas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rush University Medical Center
Schools of Medicine
United States
Zip Code
Gallagher, Michael D; Suh, Eunran; Grossman, Murray et al. (2014) TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 127:407-18
Lim, Andrew S P; Ellison, Brian A; Wang, Joshua L et al. (2014) Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain 137:2847-61
Ohta, Yasuyuki; Tremblay, Cyntia; Schneider, Julie A et al. (2014) Interaction of transactive response DNA binding protein 43 with nuclear factor ?B in mild cognitive impairment with episodic memory deficits. Acta Neuropathol Commun 2:37
Bit-Ivan, Esther N; Suh, Eunran; Shim, Hyung-Sub et al. (2014) A novel GRN mutation (GRN c.708+6_+9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases. J Neuropathol Exp Neurol 73:467-73
Tangney, Christy C; Li, Hong; Wang, Yamin et al. (2014) Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 83:1410-6
Nelson, Peter T; Estus, Steven; Abner, Erin L et al. (2014) ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol 127:825-43
James, Bryan D; Leurgans, Sue E; Hebert, Liesi E et al. (2014) Contribution of Alzheimer disease to mortality in the United States. Neurology 82:1045-50
Lim, Andrew S P; Yu, Lei; Kowgier, Matthew et al. (2013) Modification of the relationship of the apolipoprotein E ýý4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol 70:1544-51
Lim, Andrew S P; Myers, Amanda J; Yu, Lei et al. (2013) Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythms 28:117-29
Wilson, Robert S; Yu, Lei; Trojanowski, John Q et al. (2013) TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol 70:1418-24