) Helicobacter pylori is a Gram-negative bacterium that colonizes the gastric mucosa of humans. Although most H. pylori-infected persons remain asymptomatic, potentially serious sequelae of infection include gastric adenocarcinoma, duodenal ulceration, gastric ulceration, and gastric lymphoma. Gastric cancer is the second leading cause of cancer-related death worldwide, and H. pylori has been classified as a type I carcinogen by the World Health Organization. One of the major secreted proteins of H. pylori is a toxin known as VacA. VacA causes multiple alterations in gastric epithelial cells, and inhibits activation and proliferation of T lymphocytes. Most cellular effects of VacA are dependent on its ability to form anion-selective membrane channels. There is a high level of genetic variation among vacA alleles from unrelated H. pylori strains, and the encoded VacA proteins exhibit marked differences in their ability to cause alterations in human cells. The molecular basis for the observed differences in activities is not yet completely understood. A large body of literature indicates that H. pylori strains containing certain forms of vacA (termed s1, i1, or m1) are associated with a higher risk of gastric cancer or peptic ulcer disease than are strains containing other forms of vacA (termed s2, i2, or m2). Thus, VacA is considered to be an important H. pylori virulence factor. The long-term goals of this work are to understand the mechanisms by which H. pylori infection can lead to disease, to understand the basis for variation in clinical outcomes among H. pylori-infected persons, and to develop effective means for prevention and treatment of illnesses associated with H. pylori infection.
The specific aims are (i) to investigate VacA structural features that are required for intracellular toxin activity and membrane channel formation, (ii) to analyze differences in functional properties of VacA proteins encoded by different H. pylori strains, and (iii) to identify and analyze host cell components that are required for VacA cytotoxicity. Methods will include cryo-electron microscopy, crystallography, molecular genetics, and analysis of gene trap and shRNA libraries. This work is relevant not only for the study of H. pylori-associated diseases, but will also increase our understanding of bacterial pore-forming toxins, chloride-conducting membrane channels, beta- helical passenger domains secreted by an autotransporter pathway, and protein targeting of mitochondria.

Public Health Relevance

to public health: A bacterium known as Helicobacter pylori colonizes the stomach in about half of all humans. Most H. pylori-infected persons do not develop any symptoms related to this infection, but some develop gastric cancer or peptic ulcer disease. The long-term goals of this research are to understand the mechanisms by which H. pylori infection can lead to disease, to understand the basis for variation in clinical outcomes among H. pylori-infected persons, and to develop effective means for prevention and treatment of illnesses associated with H. pylori infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI039657-18
Application #
8651845
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Mills, Melody
Project Start
1996-05-01
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
18
Fiscal Year
2014
Total Cost
$390,000
Indirect Cost
$140,000
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Kodaman, Nuri; Pazos, Alvaro; Schneider, Barbara G et al. (2014) Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci U S A 111:1455-60
Voss, Bradley J; Gaddy, Jennifer A; McDonald, W Hayes et al. (2014) Analysis of surface-exposed outer membrane proteins in Helicobacter pylori. J Bacteriol 196:2455-71
Radin, Jana N; Gonzalez-Rivera, Christian; Frick-Cheng, Arwen E et al. (2014) Role of connexin 43 in Helicobacter pylori VacA-induced cell death. Infect Immun 82:423-32
Gaddy, Jennifer A; Radin, Jana N; Loh, John T et al. (2014) The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration. PLoS Pathog 10:e1004450
McClain, Mark S; Duncan, Stacy S; Gaddy, Jennifer A et al. (2013) Control of gene expression in Helicobacter pylori using the Tet repressor. J Microbiol Methods 95:336-41
Chambers, Melissa G; Pyburn, Tasia M; González-Rivera, Christian et al. (2013) Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J Mol Biol 425:524-35
Shaffer, Carrie L; Gaddy, Jennifer A; Loh, John T et al. (2011) Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 7:e1002237
de Sablet, Thibaut; Piazuelo, M Blanca; Shaffer, Carrie L et al. (2011) Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 60:1189-95
Ivie, Susan E; McClain, Mark S; Algood, Holly M Scott et al. (2010) Analysis of a beta-helical region in the p55 domain of Helicobacter pylori vacuolating toxin. BMC Microbiol 10:60
Gonzalez-Rivera, Christian; Gangwer, Kelly A; McClain, Mark S et al. (2010) Reconstitution of Helicobacter pylori VacA toxin from purified components. Biochemistry 49:5743-52

Showing the most recent 10 out of 40 publications