The overall goal of this proposal is to continue to explore a novel photochemical method for killing antibiotic resistant pathogenic bacteria or fungi in models of localized infection. Photodynamic therapy (PDT) employs a non-toxic dye termed a photosensitizer (PS) and low intensity visible light, which in the presence of oxygen produce cytotoxic species that damage proteins, lipids and nucleic acids and kill cells. PDT has the advantage of dual selectivity in that the PS can be targeted to its destination cell type or tissue, and in addition the illumination can be spatially directed to the area of infection. In the previous funding period we established that polycationic delivery vehicles such as poly-L-lysine could be conjugated to PS such as chlorin(e6), and these molecular delivery vehicles for PS increased the selective binding to bacteria and enabled the PS to penetrate the cell walls of Gram (-) bacteria to dramatically potentiate light-mediated killing.. We used luminescent bacteria and a low-light imaging camera to demonstrate that PDT will kill both Gram (-) species (eg Pseudomonas aeruginosa) and Gram (+) species (eg Staphylococcus aureus) in vivo in animal models of wounds, burns and deep established infections. Localized PDT may have an additional advantage in that it is also possible to inactivate secreted extracellular virulence factors that pathogenic bacteria use to establish infections and invade tissue. This competing renewal will seek to explore new ways of increasing the potency and applicability of antimicrobial PDT.
Four specific aims will focus on (1) studying the photochemical mechanisms of photodynamic inactivation of microbes (that may be very different from cancer cells) with the aim of devising simple combination treatments;(2) investigating the new discovery that low non-toxic concentrations of hydrogen peroxide dramatically potentiate antimicrobial PDT by orders of magnitude;(3) synthesizing and testing a third generation polycationic PS conjugates with quaternized amino groups that retain cationic character under all conditions;(4) testing the above treatments in mouse models of acute or chronic wounds and burns infected with pathogenic bacteria (P. aeruginosa or S. aureus), together with an entirely new model of spectrally resolved fluorescence imaging of GFP Candida albicans or Aspergillus fumigatus growing in traumatic lesions in various strains of mice. These avenues of research are expected to suggest simple procedures to optimize antimicrobial PDT and hasten its wide introduction into clinical practice.

Public Health Relevance

The alarming rise in prevalence of antibiotic resistance amongst pathogenic bacteria has led to worries that previously treatable infections could soon be incurable. Traumatic or surgical wounds and burns are common sites of infection that can progress to sepsis and death if they fail to be controlled by antibiotics. Photodynamic therapy (PDT) involves a combination of non- toxic dyes and harmless visible light that in combination produce highly toxic reactive oxygen species. If the dye is targeted to the bacterial cell PDT can be a highly effective local antimicrobial therapy with little damage to host tissue. This application seeks to determine the optimum parameters for antimicrobial PDT and will look at new synergistic combination therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI050875-07
Application #
7760865
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Huntley, Clayton C
Project Start
2001-12-01
Project End
2012-01-31
Budget Start
2010-02-01
Budget End
2011-01-31
Support Year
7
Fiscal Year
2010
Total Cost
$391,532
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Ramos, Loyanne C B; Rodrigues, Fernando P; Biazzotto, Juliana C et al. (2018) Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex. J Biol Inorg Chem 23:903-916
Ferraresi, Cleber; Bertucci, Danilo; Schiavinato, Josiane et al. (2018) Reply to the Letter to the Editor on ""Effects of Light-Emitting Diode Therapy on Muscle Hypertrophy, Gene Expression, Performance, Damage, and Delayed-Onset Muscle Soreness: Case-Control Study With a Pair of Identical Twins"". Am J Phys Med Rehabil 97:e2-e5
Huang, Ying-Ying; Wintner, Anton; Seed, Patrick C et al. (2018) Antimicrobial photodynamic therapy mediated by methylene blue and potassium iodide to treat urinary tract infection in a female rat model. Sci Rep 8:7257
Huang, Liyi; Xuan, Weijun; Zadlo, Andrzej et al. (2018) Antimicrobial photodynamic inactivation is potentiated by the addition of selenocyanate: Possible involvement of selenocyanogen? J Biophotonics 11:e201800029
Narita, Kouji; Asano, Krisana; Morimoto, Yukihiro et al. (2018) Corrigendum to ""Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds"" [J. Photochem. Photobiol. B Biol. 178 (January 2018) 10-18]. J Photochem Photobiol B 182:146
Tatmatsu-Rocha, José Carlos; Tim, Carla Roberta; Avo, Lucimar et al. (2018) Mitochondrial dynamics (fission and fusion) and collagen production in a rat model of diabetic wound healing treated by photobiomodulation: comparison of 904?nm laser and 850?nm light-emitting diode (LED). J Photochem Photobiol B 187:41-47
Farjadian, Fatemeh; Moghoofei, Mohsen; Mirkiani, Soroush et al. (2018) Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 36:968-985
Hamblin, Michael R (2018) Upconversion in photodynamic therapy: plumbing the depths. Dalton Trans 47:8571-8580
Hamblin, Michael R (2018) Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 96:731-743
Salehpour, Farzad; Mahmoudi, Javad; Kamari, Farzin et al. (2018) Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 55:6601-6636

Showing the most recent 10 out of 348 publications