Members of the Ascomycete genus Aspergillus are common animal and plant pathogens. Aspergillus fumigatus causes the majority of Aspergillus human infections, however, inability to identify bona-fide virulence factors has impeded therapeutic advances of this recalcitrant mold. Recently an A. fumigatus mutant, DlaeA, has been characterized that is reduced in virulence. LaeA is a transcriptional regulator of secondary metabolism in the Aspergilli and the A. fumigatus DlaeA mutant is impaired in the production of numerous secondary metabolites including mycotoxins (including gliotoxin, helvolic acid, fumagillin) and spore metabolites. Loss of virulence is associated with loss of gliotoxin levels and associated reduced mortality and growth in a pulmonary murine model, increased susceptibility to macrophage phagocytosis and decreased ability to kill neutrophil cells. The overall goal of this research is to elucidate the mechanisms leading to decreased virulence of the DlaeA mutant with emphasis on identifying the secondary metabolites contributing to pathogenicity.
Specific aims i nclude:
Aim 1. Determine the contribution of loss of gliotoxin production to the DlaeA phenotype. This will be achieved through examination of a gliotoxin mutant, DgliZ, and comparison of this mutant to DlaeA and WT for virulence in pulmonary murine model and macrophage and neutrophil assays.
Aim 2. Identify genes of other mycelial and conidial secondary metabolites involved in A. fumigatus pathogenicity. The method will consist of identifying the genes involved in biosynthesis of mycelial metabolites via microarray analysis in vitro (media) and in vivo (mouse lung). Chemical purification of spore metabolites followed by reverse genetics will be employed to identify encoding genes.
Aim 3. Functional analysis of A. fumigatus secondary metabolites. Genes identified in Aim 2 will be disrupted, mutant chemically defined and examined for virulence as in Aim 1. Advances from this work will result in identification of virulence factors conferring pathogenicity to Aspergillus fumigatus. Knowledge of virulence factors will lead to therapies to help protect the public from infections from this life threatening mold. ? ? ?

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Duncan, Rory A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Other Basic Sciences
Schools of Earth Sciences/Natur
United States
Zip Code
Barkal, Layla J; Procknow, Clare L; Álvarez-García, Yasmín R et al. (2017) Microbial volatile communication in human organotypic lung models. Nat Commun 8:1770
Vargas-Muñiz, José M; Renshaw, Hilary; Waitt, Greg et al. (2017) Caspofungin exposure alters the core septin AspB interactome of Aspergillus fumigatus. Biochem Biophys Res Commun 485:221-226
Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun et al. (2017) Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Rep 19:1008-1021
Clevenger, Kenneth D; Bok, Jin Woo; Ye, Rosa et al. (2017) A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13:895-901
Rank, Leslie A; Walsh, Naomi M; Liu, Runhui et al. (2017) A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens. Antimicrob Agents Chemother 61:
Knox, Benjamin P; Huttenlocher, Anna; Keller, Nancy P (2017) Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal Genet Biol 105:52-54
Kerr, Sheena C; Fischer, Gregory J; Sinha, Meenal et al. (2016) FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog 12:e1005555
Wang, Pin-Mei; Choera, Tsokyi; Wiemann, Philipp et al. (2016) TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genet Biol 89:102-113
Throckmorton, Kurt; Lim, Fang Yun; Kontoyiannis, Dimitrios P et al. (2016) Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environ Microbiol 18:246-59
Soukup, Alexandra A; Keller, Nancy P; Wiemann, Philipp (2016) Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi. Methods Mol Biol 1401:149-60

Showing the most recent 10 out of 34 publications