Accumulating evidence suggests that dysregulation of marginal zone macrophages (MZMs) of the spleen plays a role in the development of systemic autoimmune disease include systemic lupus erythematosus (SLE). The MZMs play an important role in trapping, processing, and inducing tolerance to apoptotic cell (AC) antigens. The molecular mechanisms underlying dysregulation of tolerogenic MZM responses in lupus and the signals that trigger this dysregulation have not been elucidated. The proposed studies test the hypotheses that: (1) A common mechanism underlying dysregulation of tolerogenic MZM responses in lupus is an alteration in the expression of a mechanosensing protein megakaryocytic leukemia-1 (MKL1) and associated filamentous actin assembly in MZMs that affects the ability of the MZMs to take up and maintain tolerance to apoptotic cell antigens (AC-Ags);(2) Alterations in expression of MKL1 and disruption of F-actin assembly can be induced by events that are characteristic of SLE. They can be induced by loss of signaling through the lymphotoxin- ? receptor (LT?R) on the MZMs resulting from type I interferon (IFN) induced "mislocalization" of MZ B cells, which express membrane lymphotoxin (mLT), from the MZ to the follicle. Notably, the "interferon signature" is a hallmark of SLE in humans and deficiency of Type 1 IFN signals in BXD2- Ifn?r-/- mice abrogates many of the abnormal immunologic MZM phenotypes as well as the production of autoantibodies and symptomatic lupus in these mice. The alterations in MKL1 and actin assembly also can be induced by chronic exposure to AC debris and immune complexes (ICs) through mechanosensing. These hypotheses will be tested using multiple mouse models with targeted disruption of pertinent pathways made available through extensive collaborations, pharmacological disruption, and state-of-the-art confocal microscopic analysis.
Aim 1 will determine if IFN?- induced follicular translocation of mLT+ MZ B cells leads to loss of MZM tolerance of ACs and ICs. In addition, BXD2 and B6.TC autoimmune mice will be used to determine if an MZM defect is a primary, early defect in lupus.
Aim 2 will focus on the LT ?R downstream signaling of MKL1 pathway and test in vivo and in vitro if the LT?R/MLK1/actin polymerization pathways play a role in maintenance of the survival of tolerogenic MZMs. Frozen sections from SLE and normal human spleen will be used to determine if loss of MARCO+ MZMs in the SLE spleen is associated with high numbers of type 1-IFN producing pDCs, follicular translocation of LT+ B cells, and dysregulation of MKL1/actin polymerization. Clinical Relevance. The studies will provide a unified model of lupus, indicate a critical novel pathogenic mechanism of type I IFNs, and identify a new molecular pathway underlying regulation of tolerogenic macrophages in SLE thereby suggesting novel candidate therapeutic targets.

Public Health Relevance

The proposed studies test a novel hypothetical mechanism underlying the maintenance of tolerogenic spleen marginal zone macrophages (MZMs) and the role of dysregulation of this mechanism in lupus. Several mouse models with targeted disruption of the components of the pathway made available through extensive collaborations and state-of-the-art confocal imaging will be used to determine: (1) If dysregulation of this mechanism underlies loss of the ability of MZMs to clear circulating apoptotic cells and maintain tolerance t autoantigens and if this is a common feature in the spleens of patients with SLE and lupus-prone mice;and (2) If dysregulation of this mechanisms can be triggered by type I interferon-induced loss of B cell interactions with the MZMs on mechanosensing of chronic exposure to dead cells. The results will pinpoint molecules that play a primary role in orchestrating autoimmune responses and are candidate therapeutic targets.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Johnson, David R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Ding, Yanna; Li, Jun; Yang, PingAr et al. (2014) Interleukin-21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice. Arthritis Rheumatol 66:2601-12
Li, Hao; Hsu, Hui-Chen; Wu, Qi et al. (2014) IL-23 promotes TCR-mediated negative selection of thymocytes through the upregulation of IL-23 receptor and ROR?t. Nat Commun 5:4259
Li, Jun; Hsu, Hui-Chen; Ding, Yana et al. (2014) Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 66:2368-79
Wang, John H; New, James S; Xie, Shutao et al. (2013) Extension of the germinal center stage of B cell development promotes autoantibodies in BXD2 mice. Arthritis Rheum 65:2703-12
Li, Jun; Yang, PingAr; Wu, Qi et al. (2013) Death receptor 5-targeted depletion of interleukin-23-producing macrophages, Th17, and Th1/17 associated with defective tyrosine phosphatase in mice and patients with rheumatoid arthritis. Arthritis Rheum 65:2594-605
Ding, Yanna; Li, Jun; Wu, Qi et al. (2013) IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J Immunol 191:1614-24
Li, Hao; Wu, Qi; Li, Jun et al. (2013) Cutting Edge: defective follicular exclusion of apoptotic antigens due to marginal zone macrophage defects in autoimmune BXD2 mice. J Immunol 190:4465-9
Mountz, John D; Li, Jun; Hsu, Hui-Chen (2012) Systemic autoimmunity caused by fas deficiency in macrophages: a new perspective on the first identified autoimmunity gene. Arthritis Rheum 64:609-12
Li, Jun; Hsu, Hui-Chen; Yang, PingAr et al. (2012) Treatment of arthritis by macrophage depletion and immunomodulation: testing an apoptosis-mediated therapy in a humanized death receptor mouse model. Arthritis Rheum 64:1098-109
Wang, John H; Wu, Qi; Yang, Pingar et al. (2011) Type I interferon-dependent CD86(high) marginal zone precursor B cells are potent T cell costimulators in mice. Arthritis Rheum 63:1054-64

Showing the most recent 10 out of 15 publications