Intracellular microbial recognition plays a critical role in innate immunity. Small fragments of bacterial peptidoglycan as well as bacterial flagellin are known to stimulate the NOD-like Receptors in mammals. This family of receptors includes both the NOD proteins, which respond to peptidoglycan fragments by activating NF-?B, and the NALP family of proteins, which respond to peptidoglycan, flagellin and other danger signals by activating IL-12 processing and release. Animals deficient in these receptors are hypersusceptible to infection, while humans carrying mutations in NOD2 and NALP3 suffer from autoinflammatory Crohn's disease and Muckle Wells Syndrome. Despite advances, it has not yet been demonstrated that any of these putative intracellular innate immune receptors directly recognize their cognate ligand, nor is it clear how these intracellular receptor transduce signals or how the induced responses contribute to efficient immune protection. In Drosophila, we have recently established that analogous intracellular microbial recognition occurs. Upon injection into flies, small fragments of peptidoglycan are recognized by the intracellular receptor PGRP-LE. Moreover, PGRP-LE directly binds these monomeric fragments of peptidoglycan causing receptor oligomerization. In addition to small fragments of peptidoglycan, PGRP-LE also recognizes cytosolic bacteria, like Listeria monocytogenes, and this recognition is critical to block bacterial growth. These results have led us to hypothesize that PGRP-LE functions as an intracellular receptor capable of recognizing peptidoglycan that enters cells, triggering receptor oligomerization, intracellular signaling and ultimately protective immune responses. We propose a series of 3 Aims that will probe in molecular detail the role of PGRP-LE and intracellular bacterial recognition in producing effective immune responses.
Aim 1 will determine which organs, cells and subcellular compartments are involved in the PGRP-LE-mediated response to monomeric peptidoglycan.
Aim 2 will characterize the molecular mechanisms of PGRP-LE-mediated signal transduction. The function of ligand-induced receptor oligomerization will be analyzed in vivo;the different responses emanating from intracellular versus cell-surface immune recognition will be probed;and a direct feedback inhibitor of these peptidoglycan binding receptors will be characterized.
Aim 3 will analyze the role of PGRP-LE in the response to pathogens that release large quantities of monomeric peptidoglycan. And the role of PGRP-LE in controlling infection by intracellular Listeria monocytogenes will be thoroughly characterized. Autophagy is critical for the control of Listeria and we will determine if PGRP-LE- mediated recognition is required for the induction of this protective response. In people, the innate immune response is absolutely critical for the rapid protection against germs and for the effectiveness of vaccines. In addition, uncontrolled innate immune reactions are often the root cause of auto-inflammatory diseases. Insects, such as the fruit fly, rely entirely on innate immune responses that are very similar to our own innate immune system, and this proposal aims to use the fruit fly, a powerful experimental system, for the study of innate immunity.

Public Health Relevance

In people, the innate immune response is absolutely critical for the rapid protection against germs and for the effectiveness of vaccines. In addition, uncontrolled innate immune reactions are often the root cause of auto-inflammatory diseases. Insects, such as the fruit fly, rely entirely on innate immune responses that are very similar to our own innate immune system, and this proposal aims to use the fruit fly, a powerful experimental system, for the study of innate immunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI074958-05
Application #
8225129
Study Section
Innate Immunity and Inflammation Study Section (III)
Program Officer
Leitner, Wolfgang W
Project Start
2008-03-01
Project End
2013-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
5
Fiscal Year
2012
Total Cost
$280,744
Indirect Cost
$79,178
Name
University of Massachusetts Medical School Worcester
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Kleino, Anni; Silverman, Neal (2014) The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol 42:25-35
Kurata, Shoichiro (2014) Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol 42:36-41
Boyer, Laurent; Paquette, Nicholas; Silverman, Neal et al. (2012) Bacterial effectors: learning on the fly. Adv Exp Med Biol 710:29-36
Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas et al. (2011) NF-?B/Rel proteins and the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol 349:25-60
Goto, Akira; Yano, Tamaki; Terashima, Jun et al. (2010) Cooperative regulation of the induction of the novel antibacterial Listericin by peptidoglycan recognition protein LE and the JAK-STAT pathway. J Biol Chem 285:15731-8
Paquette, Nicholas; Broemer, Meike; Aggarwal, Kamna et al. (2010) Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling. Mol Cell 37:172-82
Kurata, Shoichiro (2010) Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. Int Immunol 22:143-8
Charriere, Guillaume M; Ip, Wk Eddie; Dejardin, Stephanie et al. (2010) Identification of Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated muramyl dipeptide transporters. J Biol Chem 285:20147-54
Aggarwal, Kamna; Rus, Florentina; Vriesema-Magnuson, Christie et al. (2008) Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog 4:e1000120
Yano, Tamaki; Kurata, Shoichiro (2008) Induction of autophagy via innate bacterial recognition. Autophagy 4:958-60

Showing the most recent 10 out of 11 publications