Migration of eosinophils in the lung in response to repeated allergen exposure is associated with airway remodeling in chronic asthma. Mechanism involved in eosinophil recruitment and activation in the airways of asthmatic individuals are still unclear. We have discovered that intranasal administration of ClC3 siRNA prevented airway hyperresponsiveness to methacholine, BALF eosinophilia and airway inflammation in the lungs of allergic asthmatic mice. Under in vitro conditions, TGF-21 increased mRNA transcripts of ClC3 in eosinophils, and induced eosinophil chemotaxis, shape change, and transendothelial migration, which was inhibited by chloride channel blockers. Using whole cell patch-clamp, we also demonstrated a significant increase in Cl- current in human blood eosinophils in response to TGF-21 and that both ClC3 knock-down with siRNA and treatment of the cells with rottlerin abolished this effect. Our central hypothesis is that the relationships between the release of TGF-2 in the airways, eosinophil Cl- channels, and cell volume are critical determinants of cell transendothelial migration and airway invasion in bronchial asthma.
In Aim 1, we will identify cytosolic kinases involved in selective activation of voltage-gated chloride currents and regulation of ClC3 levels by TGF-2 in human blood eosinophils. The hypothesis is that TGF-2 activates protein kinase C-4 (PKC-4) to increase voltage-gated chloride current and induces phosphorylation of p38/JNK MAP kinase and protein kinase C to increase ClC-3 expression leading to heightened activation of ClC3 current. This, in turn, induces chemotaxis and transendothelial migration of eosinophils.
In Aim 2, we will analyze the transcription initiation site(s) in the ClC3 promoter and identify transcription factors involved in selective regulation of ClC- 3 levels by TGF-2 in human blood eosinophils. We will also examine the effect of the in vivo inhibition of AP-1 transcription on the expression and activity of ClC-3 in lung eosinophils of antigen-sensitized and challenged mice. The hypothesis is that TGF-2 activates phosphorylation of kinases, which in turn phosphorylate AP-1 family transcription factors and Smads, to regulate ClC3 transcription.
In Aim 3, we will examine the effect of TGF-2 on Cl- currents, shape change and migration, and the underlying cellular and molecular pathway in human blood eosinophils and eosinophils isolated from nasal washings of allergic rhinitis and allergic asthmatic patients. The hypothesis is that Cl- currents in and migration of eosinophils of allergic asthmatics will be heightened, either in unstimulated cells and/or after stimulation with TGF-2, depending upon the chronicity of asthma. The long term goal is to ascertain the effects that TGF-2 have on voltage-gated chloride currents in eosinophils and to examine the effect of immunomodulators. Such investigations would provide unique insights to the pathophysiologic process of chronic asthma and the means to prevent or reverse the disease.Project Narrative Eosinophils in the asthmatic lungs are one of the major inflammatory cells that have been implicated in the pathogenesis of chronic asthma. In this project experiments are proposed to examine the precise mechanisms of eosinophil migration into the lung tissues at the cellular and molecular level. The information obtained from this study should provide an opportunity to formulate superior therapeutic approaches in chronic asthma.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI075315-05
Application #
8239572
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Minnicozzi, Michael
Project Start
2008-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2012
Total Cost
$351,611
Indirect Cost
$106,586
Name
Creighton University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
053309332
City
Omaha
State
NE
Country
United States
Zip Code
68178
Fischer, Kimberly D; Hall, Sannette C; Agrawal, Devendra K (2016) Vitamin D Supplementation Reduces Induction of Epithelial-Mesenchymal Transition in Allergen Sensitized and Challenged Mice. PLoS One 11:e0149180
Hall, Sannette C; Agrawal, Devendra K (2016) Toll-like receptors, triggering receptor expressed on myeloid cells family members and receptor for advanced glycation end-products in allergic airway inflammation. Expert Rev Respir Med 10:171-84
Gaurav, Rohit; Bewtra, Againdra K; Agrawal, Devendra K (2015) Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma. Am J Respir Cell Mol Biol 53:235-45
Shao, Zhifei; Gaurav, Rohit; Agrawal, Devendra K (2015) Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells. Transl Res 166:89-102
Hall, Sannette; Agrawal, Devendra K (2014) Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 23:316-29
Gaurav, Rohit; Bewtra, Againdra K; Agrawal, Devendra K (2014) Novel CLC3 transcript variants in blood eosinophils and increased CLC3 expression in nasal lavage and blood eosinophils of asthmatics. Immun Inflamm Dis 2:205-13
Aggarwal, Ankita; Agrawal, Devendra K (2014) Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014:476357
Pandya, Amit N; Agrawal, Devendra K (2014) A concise synthesis of highly substituted imidazoles via copper-mediated oxidative C-H functionalization. Tetrahedron Lett 55:1835-1838
Agrawal, T; Gupta, G K; Agrawal, D K (2013) Vitamin D supplementation reduces airway hyperresponsiveness and allergic airway inflammation in a murine model. Clin Exp Allergy 43:672-83
Gaurav, Rohit; Agrawal, Devendra K (2013) Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 9:899-919

Showing the most recent 10 out of 19 publications