GAS is a preeminent Gram+ bacterial pathogen causing a wide spectrum of diseases in the human host. While the common outcome of a GAS encounter is asymptomatic colonization or self-limited mucosal infection, the propensity of particular GAS strains to produce systemic infection in otherwise healthy individuals defines a capacity to resist host innate immune clearance mechanisms that normally function to prevent dissemination beyond epithelial surfaces. A clone of the GAS M1T1 serotype has spread globally over the last 30 years as the leading cause of invasive infections including necrotizing fasciitis. Our laboratory has adopted a multifaceted approach to understanding those GAS and host factors that explain the diverse outcomes of this important host-pathogen interaction, using the invasive M1T1 GAS clone as a model. Our methodology has coupled precise, targeted mutagenesis and heterologous expression of candidate virulence factor genes with in vitro, ex vivo and in vivo models of disease pathogenesis, including WT, knockout and human transgenic mouse lines. We hypothesize that the outcome of GAS infection is dictated by the action and regulation of these GAS virulence factors in response to selective pressures exerted by host innate immunity. In this proposal, we will define the repertoire of bacterial virulence factors that promote the shift of GAS M1T1 strains to an invasive disease phenotype in response to innate immune selection.
In Aim 1, we will test a unique and extensive panel of isogenic M1T1 GAS virulence factor mutants for neutrophil resistance, invasive phenotype switching, and systemic infection in the humanized plasminogen mouse, defining those innate immune resistance factors necessary for systemic virulence. In parallel, we will constitutively express specific virulence factors to identify if any are sufficient to promote disease progression. In the complementary studies of Aim 2, we will use pharmacologic techniques and knockout mice to define those specific aspects of host innate immune defense that exert selective pressure on GAS M1T1 favoring the shift to invasive phenotype.
In Aim 3, we will determine the contribution of specific M1T1 GAS virulence genes and invasive phenotype shifting on GAS fitness during epithelial cell interactions and mucosal colonization. In this fashion, we will identify the competing selective pressures faced by this obligate human pathogen during the different stages of its overall ecology. Finally, we will assess the robustness of our experimental model (Nat Med 2007) that acquisition of a phage ?M1T1Z encoding the DNase Sda1 was a sentinel evident in the epidemic of invasive M1T1 infection, promoting resistance to phagocytic clearance through evasion of neutrophil extracellular traps. The last Aim will be achieved by exploring ?M1T1Z transduction mechanisms, phage distribution in diverse M serotype strains in the U.S. and an area of high endemic GAS disease (the Australian Northern Territory), and studying the contribution of the phage to disease switching and invasive disease in non-M1T1 strain backgrounds. Project Narrative Group A Streptococcus (GAS) is a bacteria that is a leading cause of infections in humans of all ages, from simple ?strep throat? to life-threatening ?flesh-eating? infections and shock. Serious disease is an unusual outcome, as most people can acquire the GAS bacterium in their throat or on their skin without developing symptoms. We are studying the ways in which the GAS bacteria shifts from an innocent member of our normal flora to an invasive pathogen, using molecular genetic techniques, assays of immune function, and mouse models of infection.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
GU, Xin-Xing
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Opaluch, Amanda M; Schneider, Monika; Chiang, Chih-yuan et al. (2014) Positive regulation of TRAF6-dependent innate immune responses by protein phosphatase PP1-?. PLoS One 9:e89284
Anderson, Ericka L; Cole, Jason N; Olson, Joshua et al. (2014) The fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus. J Biol Chem 289:3539-46
van Sorge, Nina M; Cole, Jason N; Kuipers, Kirsten et al. (2014) The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 15:729-40
Henningham, Anna; Yamaguchi, Masaya; Aziz, Ramy K et al. (2014) Mutual exclusivity of hyaluronan and hyaluronidase in invasive group A Streptococcus. J Biol Chem 289:32303-15
Döhrmann, Simon; Anik, Sabina; Olson, Joshua et al. (2014) Role for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps. Infect Immun 82:4011-20
Manganaro, Lara; Pache, Lars; Herrmann, Tobias et al. (2014) Tumor suppressor cylindromatosis (CYLD) controls HIV transcription in an NF-?B-dependent manner. J Virol 88:7528-40
Okumura, Cheryl Y M; Anderson, Ericka L; Dohrmann, Simon et al. (2013) IgG protease Mac/IdeS is not essential for phagocyte resistance or mouse virulence of M1T1 group A Streptococcus. MBio 4:
Barnett, Timothy C; Liebl, David; Seymour, Lisa M et al. (2013) The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14:675-82
van Sorge, Nina M; Beasley, Federico C; Gusarov, Ivan et al. (2013) Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J Biol Chem 288:6417-26
Jongerius, Ilse; von Kockritz-Blickwede, Maren; Horsburgh, Malcolm J et al. (2012) Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 4:301-11

Showing the most recent 10 out of 35 publications