Autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, diabetes and lupus, etc., affect approximately 50 million Americans. The immune responses of self-reactive T lymphocytes play critical roles in autoimmune diseases. Therefore, identification of novel molecules that regulate T cell immune functions are important for a better understanding of the mechanisms underlying the disease development and for seeking novel therapies. During the current finding period, we have discovered that the type III histone deacetylase Sirt1 as a critical suppressor to T cell immunity and macrophage activation by suppressing the transcription factors AP-1, indicating Sirt1 as a potential therapeutic target for autoimmune and inflammatory diseases. In fact, we further demonstrated that the Sirt1 activator resveratrol prevents/treats type 1 diabetes in mice. Our preliminary study of the current competitive renewal application demonstrates that the deacetylase Sirt1 and the acetyltransferase GCN5 oppositely regulate T cell activation. Genetic deletion of GCN5 gene inhibits T cell immune responses in mice, identifying GCN5 as a critical positive regulator for T cell immunity. Interestingly, treatment of mice with GCN5 specific inhibitor attenuated autoimmune disease development. Therefore, based on the above preliminary findings, we propose that the histone deacetylase Sirt1 is a negative regulator and the acetyltransferase GCN5 is a positive regulator for T cell immunity, and that the Sirt1 activator and GCN5 inhibitor have great therapeutic potentials in treatment of autoimmune diseases. This project is to address this hypothesis using the state-of-art approaches of both immunological and molecular studies. Results from this proposed study discover novel molecular mechanisms behind Sirt1 and GCN5 in T cell activation and autoimmunity, providing rationales for the uses of Sirt1 deacetylase activators and GCN5 acetyltransferase inhibitors in treating/preventing autoimmune diseases.

Public Health Relevance

This study identifies the histone deacetylase Sirt1 as a negative regulator and the acetyltransferase GCN5 as a positive regulator for T cell immune response. Therefore, Sirt1 activators and GCN5 inhibitors have great therapeutic potentials in the treatment of autoimmune diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI079056-06
Application #
8601163
Study Section
Transplantation, Tolerance, and Tumor Immunology (TTT)
Program Officer
Peyman, John A
Project Start
2008-09-25
Project End
2017-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
6
Fiscal Year
2014
Total Cost
$386,250
Indirect Cost
$136,250
Name
Northwestern University at Chicago
Department
Pathology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Kong, Sinyi; Thiruppathi, Muthusamy; Qiu, Quan et al. (2014) DBC1 is a suppressor of B cell activation by negatively regulating alternative NF-?B transcriptional activity. J Immunol 193:5515-24
Yang, Heeyoung; Qiu, Quan; Gao, Beixue et al. (2014) Hrd1-mediated BLIMP-1 ubiquitination promotes dendritic cell MHCII expression for CD4 T cell priming during inflammation. J Exp Med 211:2467-79
Kong, Sinyi; Yeung, Pricilla; Fang, Deyu (2013) The class III histone deacetylase sirtuin 1 in immune suppression and its therapeutic potential in rheumatoid arthritis. J Genet Genomics 40:347-54
Chen, Weimin; Wang, Huihui; Tao, Shasha et al. (2013) Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 12:2321-8
Zou, Ting; Yang, Yi; Xia, Fei et al. (2013) Resveratrol Inhibits CD4+ T cell activation by enhancing the expression and activity of Sirt1. PLoS One 8:e75139
Lei, Fengyang; Song, Jianyong; Haque, Rizwanul et al. (2013) Regulation of A1 by OX40 contributes to CD8(+) T cell survival and anti-tumor activity. PLoS One 8:e70635
Kemp, Kyeorda L; Lin, Zhenghong; Zhao, Fang et al. (2013) The serine-threonine kinase inositol-requiring enzyme 1* (IRE1*) promotes IL-4 production in T helper cells. J Biol Chem 288:33272-82
Qiu, Quan; Zheng, Ze; Chang, Lin et al. (2013) Toll-like receptor-mediated IRE1* activation as a therapeutic target for inflammatory arthritis. EMBO J 32:2477-90
Lin, Zhenghong; Fang, Deyu (2013) The Roles of SIRT1 in Cancer. Genes Cancer 4:97-104
Chen, Weiming; Wang, Huihui; Tao, Shasha et al. (2013) Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 12:

Showing the most recent 10 out of 18 publications