In this project, we propose to combine mRNA display (a protein design/evolution method) and high efficiency microfluidic sorting to create a new technology-microfluidic mRNA display-for the purpose of enabling design of peptides and proteins that can be used as protein capture reagents. We will develop and apply this powerful new technology toward creating a comprehensive reagent set aimed at the Hepatitis C virus (HCV) proteome. In this section, we begin by describing the existing state-of-the-art in 1) mRNA display-based peptide and protein design, 2) bead-based micromagnetic separations, and 3) give an introduction to the proteins expressed by the HCV that will be the targets of this work. This is followed by our description of how we will integrate these technologies to achieve our goal of high-throughput development of new protein capture reagents.

Public Health Relevance

Title: Polypeptide Design with Proteomic Scope via Microfluidic mRNA Display Summary In this project, we propose to combine mRNA display (a protein design/evolution method) and high efficiency microfluidic sorting to create a new technology-microfluidic mRNA display-for the purpose of enabling design of peptides and proteins that can be used as protein capture reagents. We will develop and apply this powerful new technology toward creating a comprehensive reagent set aimed at the Hepatitis C virus (HCV) proteome. In this section, we begin by describing the existing state-of-the-art in 1) mRNA display-based peptide and protein design, 2) bead-based micromagnetic separations, and 3) give an introduction to the proteins expressed by the HCV that will be the targets of this work. This is followed by our description of how we will integrate these technologies to achieve our goal of high-throughput development of new protein capture reagents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI085583-05
Application #
8525323
Study Section
Special Emphasis Panel (ZRG1-BCMB-A (51))
Program Officer
Koshy, Rajen
Project Start
2009-09-30
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$459,700
Indirect Cost
$74,305
Name
University of Southern California
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Olson, C Anders; Wu, Nicholas C; Sun, Ren (2014) A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr Biol 24:2643-51
Wang, Jinpeng; Gong, Qiang; Maheshwari, Nupur et al. (2014) Particle display: a quantitative screening method for generating high-affinity aptamers. Angew Chem Int Ed Engl 53:4796-801
Jalali-Yazdi, Farzad; Corbin, Jasmine M; Takahashi, Terry T et al. (2014) Robust, quantitative analysis of proteins using peptide immunoreagents, in vitro translation, and an ultrasensitive acoustic resonant sensor. Anal Chem 86:4715-22
Howell, Shannon M; Fiacco, Stephen V; Takahashi, Terry T et al. (2014) Serum stable natural peptides designed by mRNA display. Sci Rep 4:6008