Rheumatoid arthritis (RA) is a quintessential autoimmune syndrome with tissue-destructive chronic inflammatory lesions attacking the synovium and a wide spectrum of extra-articular organs. Mounting evidence emphasizes that RA patients not only generate autoreactive immune responses but have broadly diminished immune competence, manifesting as increased susceptibility to infection, lymphoma, and cardiovascular disease. Over the last decade, this project has been devoted to dissecting the contribution of T cells to RA pathogenesis. Our studies have led to the discovery that patients with RA have premature aging of the immune system. Remodeling of the T cell pool, characterized by shrinkage of T cell diversity and accumulation of end-differentiated memory T cells biased toward pro-inflammatory effector functions, revealed a defect in T cell generation that imposes proliferative stress and causes accelerated T cell aging. The current application will investigate this defect in T cell homeostasis and builds on our preliminary data, demonstrating a striking impairment in the survival of na?ve CD4 T cells from RA patients when undergoing antigen-driven clonal burst. In search of the underlying molecular defect, we have found that RA patients fail to induce sufficient telomerase during the priming response of na?ve CD4 T cells. Here, we will investigate the mechanistic links between malfunctioning of the telomere repair apparatus and mitochondrial apoptosis pathways, rendering na?ve CD4 T cells highly sensitive to apoptosis and undermining T cell replenishment.
In Specific Aim 1 we will knock-down telomerase in na?ve CD4 T cells from RA patients and controls and study the impact on T cell expansion after antigen-driven priming. We will repair the defective induction of hTERT in RA CD4 T cells with the intention of readjusting their apoptosis sensitivity.
Specific Aim 2 is centered on molecular mechanisms mediating na?ve CD4 T cell death with special emphasis on BCL-2 family members that function as survival proteins, pro-apoptotic executioners, or regulators. Guided by preliminary data, we will focus on the death sentinel NOXA which transmits extracellular signals controlling recovery during the CD4 priming response. Experiments have been designed to test whether the survival defect in RA T cells relates to NOXA induction and, in particular, is dependent on the p53 pathway.
In Specific Aim 3, we will explore how competition for glucose affects CD4 T cell survival during priming. Specifically, we will examine how insufficient induction of the regulatory enzyme 6-phospofructo-2-kinase/fructose-2,6- biphosphatase in RA CD4 T cells reduces glycolytic flux and renders T cells apoptosis sensitive.
Specific Aim 4 will connect the molecular studies on T cell homeostasis with the clinically important question as to what extent defective induction of telomerase and impaired survival of CD4 T cells compromise immunocompetence in RA patients and weaken their anti-microbial immune protection.
This specific aim will make use of yearly influenza vaccinations to delineate CD4 T cell expansion and contraction in vivo in a cohort of RA patients. PUBLIC HEALTH REVELANCE. Despite the development of powerful immunosuppressive agents, we have not succeeded yet in curing patients with RA. Indeed, patients treated with effective anti-cytokine biologics are now found to have increased risk for infections and tumors. Evidence has accumulated that the immune system of RA patients has a principal defect and that the chronic inflammation destroying joints and other organs systems may signify diminished and not enhanced immune function. Specifically, patients with RA have premature aging of the immune system, easily diagnosed by the shortening of telomeres in T cells. Here, we will examine how RA patients regenerate T cells in their immune system and why their T cells fail to survive when they are driven by antigen. The studies will include vaccinating RA patients with an influenza vaccine to test whether they can build sufficient T cells to be protected from infection.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Mao, Su-Yau
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Watanabe, Ryu; Hosgur, Ebru; Zhang, Hui et al. (2016) Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. Joint Bone Spine :
Wen, Zhenke; Shimojima, Yasuhiro; Shirai, Tsuyoshi et al. (2016) NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 126:1953-67
Li, Yinyin; Shen, Yi; Hohensinner, Philipp et al. (2016) Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity 45:903-916
Qi, Qian; Cavanagh, Mary M; Le Saux, Sabine et al. (2016) Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Sci Transl Med 8:332ra46
Bosetti, Francesca; Galis, Zorina S; Bynoe, Margaret S et al. (2016) "Small Blood Vessels: Big Health Problems?": Scientific Recommendations of the National Institutes of Health Workshop. J Am Heart Assoc 5:
Flego, Davide; Liuzzo, Giovanna; Weyand, Cornelia M et al. (2016) Adaptive Immunity Dysregulation in Acute Coronary Syndromes: From Cellular and Molecular Basis to Clinical Implications. J Am Coll Cardiol 68:2107-2117
Yang, Zhen; Shen, Yi; Oishi, Hisashi et al. (2016) Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med 8:331ra38
Wu, Jing; Saleh, Mohamed A; Kirabo, Annet et al. (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126:1607
Watanabe, Ryu; Goronzy, Jörg J; Berry, Gerald et al. (2016) Giant Cell Arteritis: From Pathogenesis to Therapeutic Management. Curr Treatm Opt Rheumatol 2:126-137
Wu, Jing; Saleh, Mohamed A; Kirabo, Annet et al. (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126:50-67

Showing the most recent 10 out of 182 publications