Bone is a composite of diverse cell types, extracellular matrix and mineral. Normal function is dependent upon the co-ordinate effort of several cell types, but it is the osteoblast under the influence of local and systemic factors that is primarily responsible for the synthesis, organization and deposition of an extracellular matrix that becomes mineralized during bone formation. When the balance between resorption and deposition of the bone matrix is disrupted, a variety of metabolic bone diseases such as osteoporosis, Paget's disease, and osteopetrosis can result. The goal of these studies is to define the role of the extracellular matrix deposition in bone formation. These studies will lead to a greater understanding of bone homeostasis and thereby have broad application to the spectrum of metabolic bone diseases and the pathology of connective tissues.
The specific aim of this project is to apply cutting edge molecular and cell biology techniques to define the role of biglycan and bone sialoprotein in the formation of the bone extracellular matrix. Many of the proteins of the bone matrix undergo extensive post-translational modifications including glycosylation, phosphorylation and sulfation. Biological assays have been hampered by the requirement for denaturing solvents during purification and inherently poor yields from tissues. To produce post-translationally processed recombinant glycoproteins in chemical amounts, we will develop a novel system for vaccinia virus-driven expression in osteoblast-like cells. This important advance in the study of matrix biology will enable the role of the complex post-translational modifications of these molecules to be defined. The ultimate goal of this research is to determine the function of these molecules and define their interaction with the extracellular matrix, the resident cells, and growth factors. This will be achieved by (a) transient, short-term expression and (b) stable, long-term expression of wild-type and mutant extracellular matrix glycoproteins. Intermolecular interactions will be studied (a) by in cellulo expression in osteoblast cultures that deposit mature collagenous extracellular matrices and (b)by in vitro binding studies, primarily based on the technique of surface plasmon resonance available in the BIAcore System (Pharmacia).

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR042826-04
Application #
2667812
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Project Start
1995-03-31
Project End
1999-02-28
Budget Start
1998-03-01
Budget End
1999-02-28
Support Year
4
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Texas Agrilife Research
Department
Type
Schools of Earth Sciences/Natur
DUNS #
110521739
City
College Station
State
TX
Country
United States
Zip Code
77843
Amenta, Alison R; Creely, Hilliary E; Mercado, Mary Lynn T et al. (2012) Biglycan is an extracellular MuSK binding protein important for synapse stability. J Neurosci 32:2324-34
Mercado, Mary Lynn; Amenta, Alison R; Hagiwara, Hiroki et al. (2006) Biglycan regulates the expression and sarcolemmal localization of dystrobrevin, syntrophin, and nNOS. FASEB J 20:1724-6
Seo, Neung-Seon; Hocking, Anne M; Hook, Magnus et al. (2005) Decorin core protein secretion is regulated by N-linked oligosaccharide and glycosaminoglycan additions. J Biol Chem 280:42774-84
Goldoni, Silvia; Owens, Rick T; McQuillan, David J et al. (2004) Biologically active decorin is a monomer in solution. J Biol Chem 279:6606-12
Neame, P J; Kay, C J; McQuillan, D J et al. (2000) Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell Mol Life Sci 57:859-63
Iozzo, R V; Moscatello, D K; McQuillan, D J et al. (1999) Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem 274:4489-92
Yang, V W; LaBrenz, S R; Rosenberg, L C et al. (1999) Decorin is a Zn2+ metalloprotein. J Biol Chem 274:12454-60
Krishnan, P; Hocking, A M; Scholtz, J M et al. (1999) Distinct secondary structures of the leucine-rich repeat proteoglycans decorin and biglycan. Glycosylation-dependent conformational stability. J Biol Chem 274:10945-50
Marchetti, D; McQuillan, D J; Spohn, W C et al. (1996) Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56:2856-63
Hocking, A M; Strugnell, R A; Ramamurthy, P et al. (1996) Eukaryotic expression of recombinant biglycan. Post-translational processing and the importance of secondary structure for biological activity. J Biol Chem 271:19571-7

Showing the most recent 10 out of 11 publications