Total joint replacement (TJR) is a highly successful surgical procedure however the long-term survivorship is limited by wear of the bearing surfaces. Monocyte Chemoattractant Protein-1 (MCP-1) is the most important chemokine regulating systemic and local trafficking of monocyte/macrophages in inflammation. In vitro, in vivo and tissue retrieval studies have demonstrated a critical role for MCP-1 in wear particle-induced inflammation. The goals of this grant proposal are twofold 1) to develop, functionalize and validate a novel orthopaedic implant nano-coating that will deliver anti-MCP-1 protein therapy to the implant-bone interface and 2) to modulate macrophage polarization at the interface from an M1 (pro-inflammatory) to an M2 (pro- tissue remodeling and angiogenesis) phenotype with local infusion of the anti-inflammatory cytokine Interleukin-4 (IL-4). Both of these strategies will decrease chronic inflammation near the implant, improve bone apposition, and decrease particle-induced bone loss due to continuous local infusion of wear particles using our established in vivo murine model.
Specific Aim #1 : To construct, optimize and validate a local delivery system in which mutant anti-MCP-1 protein (called 7ND protein) is eluted from a titanium rod in vitro.
Specific Aim #2 : To demonstrate that local delivery of 7ND protein decreases systemic macrophage trafficking to the protein eluting titanium implant, thereby improving bone apposition and decreasing peri- implant osteolysis, using the murine continuous polyethylene particle infusion model.
Specific Aim #3 : To demonstrate that transformation of macrophages located at the bone-implant interface in the presence of continuously infused polyethylene particles from an M1 (pro-inflammatory) to an M2 (pro- tissue remodeling and angiogenesis) phenotype with local delivery of IL-4 will decrease bone loss and improve bone apposition adjacent to the implant. The proposed studies aspire to modulate the inflammatory reaction to polymer wear particles using a murine model of continuous polyethylene particle infusion, similar to the clinical scenario in humans. Strategies which target macrophage migration (delivery of a mutant MCP-1 protein near the implant) and alter the phenotype of local peri-implant macrophages to one supporting tissue remodeling and angiogenesis (local infusion of IL-4) will be tested. The techniques of bioluminescence, microCT and micro PET scanning, histology and morphometry will be used to delineate systemic trafficking of macrophages to the particles, the characteristics of the local inflammatory reaction, and development or prevention of osteolysis. Both of the biological strategies proposed are novel, mechanistic and directly translational;they should result in decreased peri-implant inflammation, improved bone apposition and decreased particle-induced bone loss, potentially extending the lifetime of joint replacements.

Public Health Relevance

Total joint replacement (TJR) is a highly successful surgical procedure for end-stage arthritis however the longevity of TJRs is limited by wear of the bearing surfaces. Wear particles stimulate a chronic inflammatory reaction that causes local bone destruction around the implant. The purpose of this grant is to test two novel translational strategies to mitigate particle-associated bone destruction by interfering with inflammatory cell signaling, and transforming the inflammatory cells to cells favoring tissue regeneration. Both strategies have a high likelihood of extending the lifetime of TJRs in humans.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Panagis, James S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Gallo, Jiri; Raska, Milan; Kriegova, Eva et al. (2017) Inflammation and its resolution and the musculoskeletal system. J Orthop Translat 10:52-67
Gibon, Emmanuel; Lu, Laura Y; Nathan, Karthik et al. (2017) Inflammation, ageing, and bone regeneration. J Orthop Translat 10:28-35
Lu, Laura Y; Loi, Florence; Nathan, Karthik et al. (2017) Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res 35:2378-2385
Takagi, Michiaki; Takakubo, Yuya; Pajarinen, Jukka et al. (2017) Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 10:68-85
Lin, Tzuhua; Pajarinen, Jukka; Nabeshima, Akira et al. (2017) Orthopaedic wear particle-induced bone loss and exogenous macrophage infiltration is mitigated by local infusion of NF-?B decoy oligodeoxynucleotide. J Biomed Mater Res A 105:3169-3175
Nabeshima, Akira; Pajarinen, Jukka; Lin, Tzu-Hua et al. (2017) Mutant CCL2 protein coating mitigates wear particle-induced bone loss in a murine continuous polyethylene infusion model. Biomaterials 117:1-9
Córdova, Luis A; Loi, Florence; Lin, Tzu-Hua et al. (2017) CCL2, CCL5, and IGF-1 participate in the immunomodulation of osteogenesis during M1/M2 transition in vitro. J Biomed Mater Res A 105:3069-3076
Gibon, Emmanuel; Córdova, Luis A; Lu, Laura et al. (2017) The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater 105:1685-1691
Lin, Tzuhua; Pajarinen, Jukka; Nabeshima, Akira et al. (2017) Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther 8:277
Lin, T-H; Pajarinen, J; Lu, L et al. (2017) NF-?B as a Therapeutic Target in Inflammatory-Associated Bone Diseases. Adv Protein Chem Struct Biol 107:117-154

Showing the most recent 10 out of 74 publications