The aim of this proposal is to define the role of Bicaudal-C homolog 1 (Bicc1) in bone. Using an innovative systems genetics approach in the mouse we predicted that Bicc1 was the basis of a BMD quantitative trait locus (QTL). Bicc1 is an RNA-binding protein that has been implicated in the regulation of primary cilia. In this proposal, we demonstrate that jcpk mice, which are heterozygous for a Bicc1 null allele, are osteopenic and that genetic variants in human BICC1 gene are associated with BMD. Moreover, Bicc1 is highly expressed in differentiating osteoblasts and Bicc1 knockdown in primary calvarial osteoblasts impairs differentiation. We also show that Bicc1 regulates Pkd2, which is thought to be a critical component of the primary cilia on osteoblasts. Based on these data we hypothesize that Bicc1 influences BMD through an osteoblast and Pkd2 dependent mechanism.
In Specific Aim 1 a series of in vitro and in vivo interaction experiments will be used to determine if the actions of Bicc1 on osteoblast differentiation and BMD are via the regulation of Pkd2 levels.
In Specific Aim 2 we will determine if Bicc1 regulates BMD in an osteoblast-specific manner. This will be accomplished by ablating Bicc1 in osteoblasts using the cre-loxP technology and characterizing bone mass using microCT and histomorphometry. Transcriptional network analysis will also be used to further characterize Bicc1 function. The proposed studies will significantly advance our understanding of a novel BMD gene.

Public Health Relevance

Successful completion of this proposal will begin to reveal how Bicc1, a novel BMD gene, affects bone mass. It also has the potential to advance our understanding of a novel mechanism regulating primary cilia function in bone.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Sharrock, William J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
Public Health & Prev Medicine
Schools of Medicine
United States
Zip Code
Farber, Charles R; Reich, Adi; Barnes, Aileen M et al. (2014) A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res 29:1402-11
Song, Woo-Jin; Mondal, Prosenjit; Wolfe, Andrew et al. (2014) Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab 19:667-81
Mesner, Larry D; Ray, Brianne; Hsu, Yi-Hsiang et al. (2014) Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. J Clin Invest 124:2736-49
Farber, Charles R (2013) Systems-level analysis of genome-wide association data. G3 (Bethesda) 3:119-29