Tissue morphogenesis and homeostasis require proper stem cell (SC) function. Our long-term goal is to understand the molecular mechanisms that underlie how SCs self-renew, maintain their multipotent state, and differentiate into multiple lineages. This knowledge of SC biology is important to better manipulate SCs for uses in regenerative medicine, and to understand how their aberrations might contribute to a variety of diseases including tumorigenesis. 2-catenin is the key mediator of the canonical Wnt signaling pathway, which controls many aspects of development, including SC activation during hair morphogenesis and regeneration. Tcf3 and Tcf4 are HMG transcription factor members that either can activate gene transcription when bound to 2-catenin, or can repress target gene transcription when bound to corepressors. However, it remains unclear whether, in the absence of 2-catenin, Tcf3/4 repress only Wnt target genes or whether Tcf3/4 also function to repress genes that are independent of the Wnt/2-catenin signaling pathway. Tcf3 has been shown to be one of the core components of the regulatory network of embryonic SCs, and its expression in other adult SCs suggests that it likely plays an important role in these SCs as well. Our preliminary results show that Tcf3/4 loss affects skin epithelial stem cell homeostasis. In this proposal we aim to determine the Wnt-dependent and Wnt-independent function of Tcf3 and Tcf4 in maintaining skin epithelial stem cell homeostasis. We employ a genetic mouse model with targeted Tcf3/4 genes to dissect the mechanisms by which Tcf3/4 regulate stem cells homeostasis, using both in vitro and in vivo assays. This will allow us to delineate the Wnt/2-catenin dependent and independent role of Tcf3/4 in controlling specific function that allow epidermal stem cells homeostasis.

Public Health Relevance

Understanding how stem cells grow and are controlled is of tremendous interest because of the potential use of stem cells for tissue replacement. In addition, it is also important for our understanding of cancer since cancer cells often display many characteristics of stem cells, as recent evidence suggests that cancerous cells might arise from stem cell origin. In this proposal we propose to determine how the loss of two particular genes disrupts the maintenance of skin epithelial stem cells and identify the mechanism by which they control their fate.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Baker, Carl
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Ku, Amy T; Miao, Qi; Nguyen, Hoang (2016) Monitoring Wnt/?-Catenin Signaling in Skin. Methods Mol Biol 1481:127-40
Goodell, Margaret A; Nguyen, Hoang; Shroyer, Noah (2015) Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 16:299-309
Miao, Qi; Ku, Amy T; Nishino, Yudai et al. (2014) Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. Nat Commun 5:4088
Howard, Jeffrey M; Nuguid, Justine M; Ngole, Diana et al. (2014) Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development 141:3143-52
Liao, Xin-Hua; Nguyen, Hoang (2014) Epidermal expression of Lgr6 is dependent on nerve endings and Schwann cells. Exp Dermatol 23:195-8
Leishman, Erin; Howard, Jeffrey M; Garcia, Gloria E et al. (2013) Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development 140:3809-18
Wu, Chun-I; Hoffman, Jackson A; Shy, Brian R et al. (2012) Function of Wnt/?-catenin in counteracting Tcf3 repression through the Tcf3-?-catenin interaction. Development 139:2118-29
Liu, Wei; Shaver, Timothy M; Balasa, Alfred et al. (2012) Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome). PLoS One 7:e32331
Berg, Jonathan S; Lin, Kuanyin K; Sonnet, Corinne et al. (2011) Imprinted genes that regulate early mammalian growth are coexpressed in somatic stem cells. PLoS One 6:e26410