Functional tissue regeneration remains an elusive goal for the treatment of a variety of traumatic injuries and chronic degenerative diseases that afflict a significant portion of the general population. Although mammals successfully regenerate tissues during early stages of fetal development, this trait is irreversibly lost as mammals mature. The contrast between embryonic and adult wound healing mechanisms suggests that the microenvironment that facilitates proper tissue regeneration in embryos is distinctly different from that of adult somatic tissues. Therefore, obtaining and introducing the molecular constituents of embryonic microenvironments to sites of adult tissue injury or disease may alter the course of endogenous tissue repair, yielding functional neo-tissues. A number of stem cell therapies are being developed in an attempt to restore the cellularity of damaged tissues, and in most instances, despite low levels of engraftment and differentiation into mature cell types, transplanted stem cells evoke significant functional improvements in the regenerative potential of tissues, indicating that the factors produced by stem cells may in fact directly impact tissue morphogenesis. This concept suggests a potential paradigm shift in the development and application of regenerative stem cell therapies - from cell replacement substitutes to biocatalytic agents of tissue regeneration. Thus, the objective of this proposal is to develop engineered biomaterials capable of sequestering morphogenic factors produced by differentiating embryonic stem cells (ESCs) and to deliver ESC-derived morphogens to adult wound sites in order to enhance tissue regeneration. These studies will provide new insights into the regenerative function of pluripotent stem cells and mechanisms of mammalian tissue repair, as well as directly lead to the development of a new class of regenerative molecular therapeutics to treat a variety of traumatic injuries and degenerative diseases.

Public Health Relevance

The inability of adult mammals to restore normal tissue structure and function following traumatic injury or due to degenerative disease remains a leading challenge to the development of effective biomedical therapies. Stem cells are capable of differentiating into cell types that could be used to replace cells lost due to injury and disease, but stem cells also contribute unique combinations of molecules capable of improving tissue repair. This proposal seeks to develop a clinically translatable and controlled approach to deliver potent molecular factors produced by stem cells via engineered biomaterials in order to promote the regeneration of injured tissues in adult mammals.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Tseng, Hung H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgia Institute of Technology
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Rinker, Torri E; Philbrick, Brandon D; Hettiaratchi, Marian H et al. (2018) Microparticle-mediated sequestration of cell-secreted proteins to modulate chondrocytic differentiation. Acta Biomater 68:125-136
Hettiaratchi, Marian H; Rouse, Tel; Chou, Catherine et al. (2017) Enhanced in vivo retention of low dose BMP-2 via heparin microparticle delivery does not accelerate bone healing in a critically sized femoral defect. Acta Biomater 59:21-32
Hettiaratchi, Marian H; Chou, Catherine; Servies, Nicholas et al. (2017) Competitive Protein Binding Influences Heparin-Based Modulation of Spatial Growth Factor Delivery for Bone Regeneration. Tissue Eng Part A 23:683-695
Matthys, Oriane B; Hookway, Tracy A; McDevitt, Todd C (2016) Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells. Curr Stem Cell Rep 2:43-51
Tellier, Liane E; Miller, Tobias; McDevitt, Todd C et al. (2015) Hydrolysis and Sulfation Pattern Effects on Release of Bioactive Bone Morphogenetic Protein-2 from Heparin-Based Microparticles. J Mater Chem B 3:8001-8009
Fitzpatrick, Lindsay E; McDevitt, Todd C (2015) Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 3:12-24
Murphy, William L; McDevitt, Todd C; Engler, Adam J (2014) Materials as stem cell regulators. Nat Mater 13:547-57
Miller, Tobias; Goude, Melissa C; McDevitt, Todd C et al. (2014) Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery. Acta Biomater 10:1705-19
Hettiaratchi, Marian H; Miller, Tobias; Temenoff, Johnna S et al. (2014) Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials 35:7228-38
Goude, Melissa C; McDevitt, Todd C; Temenoff, Johnna S (2014) Chondroitin sulfate microparticles modulate transforming growth factor-?1-induced chondrogenesis of human mesenchymal stem cell spheroids. Cells Tissues Organs 199:117-30

Showing the most recent 10 out of 13 publications