Rheumatoid arthritis is a disabling disease that affects up to 1% of the adult population. With the heritability of RA estimated at about 60%, the major genetic association has been linked to the HLA-DRB1 gene within the major histocompatibility complex (MHC) region on chromosome 6. More than 20 years ago, the "shared epitope" hypothesis implicated a short stretch of amino acids (residues 70-74) in the HLA-DRB1 protein subunit, providing a solid foundation for subsequent RA studies. Yet uncertainty remains as to the causal variants within DRB1 and the existence of associations outside DRB1. In this project, we develop an imputation procedure to re-analyze existing GWAS data sets of RA in order to fine-map association signals in the MHC. Besides imputing classical HLA alleles, we also focus on the role of specific amino acid polymorphisms within the classical HLA proteins. We will analyze data sets from multiple ethnicities (European, African American, Han Chinese and Korean) in order to increase power to identify causal variants. Ultimately, insights from our project can help identify the (self-)antigens targeted in RA pathogenesis. Our analytic strategy is broadly applicable beyond RA, and could help interpret MHC associations for many other immune-related diseases based on existing GWAS data. We will share our software tools with the human genetics community.

Public Health Relevance

Rheumatoid arthritis is a disabling inflammatory polyarthritis disease that affects up to 1% of the adult population. While the importance of the major histocompatability complex was highlighted in studies since the 1970s, the specific HLA genes and their variants that play a critical role in the disease have been much harder to unambiguosly determine. In this proposal, we aim to clarify the role of HLA genes and their amino acid residue variants by analyzing existing data sets in up to 30,000 individuals of multiple ethnicities.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GGG-M (50))
Program Officer
Wang, Yan Z
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Han, Buhm; Kang, Eun Yong; Raychaudhuri, Soumya et al. (2014) Fast pairwise IBD association testing in genome-wide association studies. Bioinformatics 30:206-13
Slowikowski, Kamil; Hu, Xinli; Raychaudhuri, Soumya (2014) SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. Bioinformatics 30:2496-7
Okada, Yukinori; Han, Buhm; Tsoi, Lam C et al. (2014) Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet 95:162-72
Ombrello, Michael J; Kirino, Yohei; de Bakker, Paul I W et al. (2014) Behçet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 111:8867-72
Han, Buhm; Diogo, Dorothée; Eyre, Steve et al. (2014) Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am J Hum Genet 94:522-32
Navon, Oron; Sul, Jae Hoon; Han, Buhm et al. (2013) Rare variant association testing under low-coverage sequencing. Genetics 194:769-79
He, Dan; Wang, Zhanyong; Han, Buhm et al. (2013) IPED: inheritance path-based pedigree reconstruction algorithm using genotype data. J Comput Biol 20:780-91
Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya (2013) Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 9:141-53
Seddon, Johanna M; Yu, Yi; Miller, Elizabeth C et al. (2013) Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet 45:1366-70
Sul, Jae Hoon; Han, Buhm; Ye, Chun et al. (2013) Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet 9:e1003491

Showing the most recent 10 out of 11 publications