Aberrant interleukin family cytokine activation of inflammation characterizes a wide spectrum of autoimmune, inflammatory, neoplastic, and neonatal disorders, including arthritis, obstructive lung disease, psoriasis and asthma. We created a novel technology, protein painting, and used it to discover, and create, a novel peptide inhibitor, called Arg286p, that abolishes the necessary interaction of IL1-RAcP with the IL-1?-IL1Receptor complex. Arg286p constitutes a novel specific and potent approach to treat interleukin mediated inflammatory diseases. The binding interface contact points between interacting protein partners are important drug targets for the next generation of therapies that block such interactions. Employing a new class of small molecule affinity chemistry, protein painting has a positive hit specificity of 93% and yield up to ten fold higher compared to conventional cross linking or deuterium exchange methods. Using our technology to study the 3-way interaction of interleukin-1? (IL-1?, IL-1 receptor I (IL-1RI), and IL-1 receptor accessory protein (IL-1RAcP), we identified a highly conserved beta-loop Arg286 region of the IL-1RAcP protein that participates in a multivalent interaction with the ligand and the receptor. We validated this novel target to be necessary for IL1?-mediated signaling. We created a folded protein peptide Arg286p that corresponds to the Arg286 beta loop domain, and a monoclonal antibody that recognizes the IL-1RAcP Arg286 surface domain. Our Arg286 peptide compound abolished interleukin signaling in a cell culture model in a dose-dependent manner, compared to a control peptide lacking the arginine in the 286 position. The Arg286 peptide and the anti-Arg286 mAb also abolished formation of the IL-1?, IL-1RI, and IL-1RAcP 3-way complex, in vitro, in a dose-dependent manner. IL1-RAcP is an accessory protein that is recruited after the interleukin ligand binds to the receptor, and signaling requires all members of this three-way complex formation. Our new inhibitor Arg286p mimics a small key multivalent interaction region at the arginine 286 beta loop of IL1-RacP, thereby abolishing complex formation and preventing downstream inflammatory signaling. Since Arg286p acts downstream of receptor-ligand binding, it can massively amplify the potency for interleukin therapy even in the face of excess ligand, and may be superior to, or synergistic with, existing IL-1 therapies that competitively target the ligand. Under the Aims, we will create new structural modifications in this lead compound to optimize its affinity and stability for IL-1 and we will use it as a basis to create novel inhibitos specific for IL33 and IL36, for which clinical inhibitors do not exist. We will employ our protein painting technology in a novel iterative workflow to guide the design of peptide modulators (agonists and antagonists) that are either optimized in potency for IL-1 or specific for IL-33 and IL-36 in vitro, in three types of assays. The optimized version of our lead compound will be studied in a well-established animal model of osteoarthritis. Osteoarthritis causes suffering for 27 million Americans.

Public Health Relevance

We created a novel chemistry, protein painting, to map the drug targets hidden within protein complexes. We will employ this technology to create and optimize novel highly potent therapies for inflammatory diseases, including osteoarthritis that afflicts 27 million Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
1R01AR068436-01
Application #
8944833
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Tyree, Bernadette
Project Start
2015-07-01
Project End
2018-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
George Mason University
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
077817450
City
Fairfax
State
VA
Country
United States
Zip Code
22030
Steinberg, Hannah E; Russo, Paul; Angulo, Noelia et al. (2018) Toward detection of toxoplasmosis from urine in mice using hydro-gel nanoparticles concentration and parallel reaction monitoring mass spectrometry. Nanomedicine 14:461-469
DeMarino, Catherine; Pleet, Michelle L; Cowen, Maria et al. (2018) Antiretroviral Drugs Alter the Content of Extracellular Vesicles from HIV-1-Infected Cells. Sci Rep 8:7653
Fernandez, Harvey R; Gadre, Shreyas M; Tan, Mingjun et al. (2018) The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ 25:1239-1258
Araujo, Robyn P; Liotta, Lance A (2018) The topological requirements for robust perfect adaptation in networks of any size. Nat Commun 9:1757
Paris, Luisa; Magni, Ruben; Zaidi, Fatima et al. (2017) Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med 9:
Günther, Sebastian; Deredge, Daniel; Bowers, Amanda L et al. (2017) IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor. Immunity 47:510-523.e4
Pin, Elisa; Stratton, Steven; Belluco, Claudio et al. (2016) A pilot study exploring the molecular architecture of the tumor microenvironment in human prostate cancer using laser capture microdissection and reverse phase protein microarray. Mol Oncol 10:1585-1594
Douglas, David B; Boone, John M; Petricoin, Emanuel et al. (2016) Augmented Reality Imaging System: 3D Viewing of a Breast Cancer. J Nat Sci 2:
Popova, Taissia G; Teunis, Allison; Magni, Ruben et al. (2015) Chemokine-Releasing Nanoparticles for Manipulation of Lymph Node Microenvironment. Nanomaterials (Basel) 5:298-320
Dailing, Angela; Luchini, Alessandra; Liotta, Lance (2015) Unlocking the secrets to protein-protein interface drug targets using structural mass spectrometry techniques. Expert Rev Proteomics 12:457-67

Showing the most recent 10 out of 17 publications