Inflammatory bowel disease (IBD), consisting of ulcerative colitis (UC) and Crohn's disease, is a source of substantial morbidity for 1.4 million people affected in the USA, and it can progress to colon cancer. It is difficult to treat, with cosly immunotherapies only inducing remission in less than half of cases. We have been focusing on the role of the semi-essential amino acid, L-arginine (L-Arg) as a complementary and alternative medicine. We have demonstrated mechanisms for beneficial effects of L-Arg in vitro and in colitis. Cationic amino acid transporter 2 (CAT2), the inducible transporter of L-Arg, and uptake of L-Arg are upregulated in murine colitis, and oral L-Arg supplementation is effective as a treatment for epithelial injury and inflammation induced by dextran sulfate sodium (DSS), a model that mimics UC. CAT2 expression, L-Arg uptake, and L-Arg levels are all decreased in UC tissues. CAT2-/- mice exhibit marked exacerbation of DSS colitis, and colon tumorigenesis in the azoxymethane (AOM)-DSS model of colitis-associated carcinoma (CAC). CAT2-/- mice do not respond to L-Arg supplementation in the DSS colitis model, suggesting that L-Arg alone as a therapy for human UC may not be sufficient to overcome its impaired transport into tissues. Colonic epithelial restitution in a wound repair model is dependent on CAT2 and this is due to utilization of L-Arg by arginase that generates L-ornithine (L-Orn), which can be metabolized by either ornithine decarboxylase (ODC) to generate polyamines, or ornithine aminotransferase (OAT) to generate L-proline (L-Pro). While inhibition of arginase or knockdown of arginase 1 (Arg1) prevented restitution, this could be completely restored, in the presence of L- Arg, when either L-Orn or L-Pro was added. Knockdown of OAT, but not ODC, prevented beneficial effects of L-Arg on restitution, implicating OAT in the maintenance of epithelial function. Additionally, ODC+/- mice exhibit improvement in DSS colitis, with increased tissue macrophage NO production, and enhanced regulatory T cell and macrophage responses, indicating a deleterious role for polyamines in this model. We hypothesize that benefits of L-Arg in colitis and colitis-associated tumorigenesis depend on CAT2 and downstream effectors to improve epithelial restitution, innate immune function, and adaptive immunity. In our Specific Aims we will determine if: 1) exacerbation of DSS colitis due to deletion of CAT2 and loss of L-Arg availability that mimics human UC is due to an epithelial or macrophage defect and if this is ameliorated by supplementation of L-Orn or L-Pro in combination with L-Arg;2.) improvement in DSS colitis in ODC+/- mice is due to an epithelial or macrophage effect and if it results from enhanced L-Arg availability for iNOS and/or OAT;3.) accelerated tumorigenesis with CAT2 deletion is due to an epithelial or macrophage defect and if this process can be beneficially modulated by downregulation of ODC or supplementation of L-Orn or L-Pro in combination with L- Arg. Through investigation of epithelial and immune function, these studies seek to provide new macronutrient- based strategies for treatment of IBD and prevention of colitis-associated dysplasia and carcinoma.

Public Health Relevance

Inflammatory bowel disease (IBD) affects 1.4 million Americans and results in a substantial amount of suffering and the risk for developing cancer of the colon. L-arginine (L-Arg) is an amino acid that is important for protein synthesis and immune responses, and we have found that cells that line the colon require it to repair injury and mice have less disease when they are supplemented with it in a model of colitis that mimics ulcerative colitis, a form of IBD. Because we discovered that patients with ulcerative colitis have impaired availability of L-Arg in their inflamed tissues, we will use mice with defective transport of L-Arg to understand why these animals have exaggerated experimental colitis and colitis-associated tumors, and to devise new interventions based on oral amino acid supplementation strategies to treat colitis and prevent cancer development.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Research Project (R01)
Project #
5R01AT004821-06
Application #
8690770
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Duffy, Linda C
Project Start
2013-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Nashville
State
TN
Country
United States
Zip Code
37212
Sierra, Johanna C; Asim, Mohammad; Verriere, Thomas G et al. (2017) Epidermal growth factor receptor inhibition downregulates Helicobacter pylori-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut :
Parang, Bobak; Kaz, Andrew M; Barrett, Caitlyn W et al. (2017) BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis. Gut 66:852-862
Hardbower, Dana M; Asim, Mohammad; Luis, Paula B et al. (2017) Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A 114:E751-E760
Gobert, Alain P; Wilson, Keith T (2017) Effect of CO2 on Peroxynitrite-Mediated Bacteria Killing: Response to Tsikas et al. Trends Microbiol 25:602-603
McDonough, Elizabeth M; Barrett, Caitlyn W; Parang, Bobak et al. (2017) MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight 2:
Hardbower, D M; Coburn, L A; Asim, M et al. (2017) EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene 36:3807-3819
Gobert, Alain P; Wilson, Keith T (2017) Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases. Curr Top Microbiol Immunol 400:27-52
Mera, Robertino M; Bravo, Luis E; Camargo, M Constanza et al. (2017) Dynamics of Helicobacter pylori infection as a determinant of progression of gastric precancerous lesions: 16-year follow-up of an eradication trial. Gut :
Rosen, Michael J; Karns, Rebekah; Vallance, Jefferson E et al. (2017) Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients. Gastroenterology 152:1345-1357.e7
Beceiro, S; Radin, J N; Chatuvedi, R et al. (2017) TRPM2 ion channels regulate macrophage polarization and gastric inflammation during Helicobacter pylori infection. Mucosal Immunol 10:493-507

Showing the most recent 10 out of 88 publications