The most deadly characteristic of cancer cells is to invade local tissues and establish productive niches outside of the primary tumor site wherein proliferative responses are re-engaged within the specialized confines of the 3-dimensional (3D) extracellular matrix. Current evidence indicates that extravasating cancer cells may reside within distant tissues in a dormant state awaiting further genetic or epigenetic events before initiating proliferative activity. However, the molecular mechanisms that support the re-engagement of proliferative programs in 3D matrix environments remain undefined. Using newly developed conditional knockout models of the membrane-anchored matrix metalloproteinases, MT1-MMP and/or MT2-MMP, we describe new studies demonstrating that these proteolytic enzymes control the post-extravasation, 3D growth of cancer cells by remodeling the surrounding extracellular matrix and activating a YAP/TAZ mechanotransduction axis that controls proliferative responses following the RalA/exocyst-dependent mobilization of the metalloproteinases to the cell surface. Concurrently, MT-MMPs are also unexpectedly routed to the cancer cell nuclear compartment where they also impact proliferation programs by exerting direct transcriptional control of cellular functions. Given these preliminary findings, we outline plans for molecular and cellular studies that seek to i) characterize the role of RalA-exocyst axis regulating MT-MMP trafficking to the cell surface, ii) define the role of the MT- MMP/YAP-TAZ mechanotransduction axis in regulating cancer cell behavior and iii) characterize MT-MMP nuclear trafficking as a novel regulatory hub for controlling cancer cell transcriptional responses. These studies should provide new insights into the role of the MT-MMPs in controlling the behavior of cancer cell populations growing within the 3D extracellular matrix and lead to the identification of novel targets for therapeutic intervention.

Public Health Relevance

These studies provide new insights into the role of membrane-anchored matrix metalloproteinases in controlling proliferative responses in neoplastic cell populations embedded within the 3D extracellular matrix by remodeling the pericellular environment and altering transcriptional regulation via discrete changes in cell shape, cytoskeletal organization and nuclear trafficking. These proteases and their downstream effectors could serve as important targets for therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA071699-16A1
Application #
8632668
Study Section
Intercellular Interactions (ICI)
Program Officer
Snyderwine, Elizabeth G
Project Start
1997-06-11
Project End
2019-02-28
Budget Start
2014-04-01
Budget End
2015-02-28
Support Year
16
Fiscal Year
2014
Total Cost
$320,865
Indirect Cost
$114,521
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Tang, Yi; Rowe, R Grant; Botvinick, Elliot L et al. (2013) MT1-MMP-dependent control of skeletal stem cell commitment via a ?1-integrin/YAP/TAZ signaling axis. Dev Cell 25:402-16
Wolf, Katarina; Te Lindert, Mariska; Krause, Marina et al. (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069-84
Willis, A L; Sabeh, F; Li, X-Y et al. (2013) Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J Microsc 251:250-60
Shimizu-Hirota, Ryoko; Xiong, Wanfen; Baxter, B Timothy et al. (2012) MT1-MMP regulates the PI3K?·Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev 26:395-413
Koenig, Gerald C; Rowe, R Grant; Day, Sharlene M et al. (2012) MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction. Am J Pathol 180:1863-78
Rowe, R Grant; Keena, Daniel; Sabeh, Farideh et al. (2011) Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 301:L683-92
Lu, Changlian; Li, Xiao-Yan; Hu, Yuexian et al. (2010) MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115:221-9
Chun, Tae-Hwa; Inoue, Mayumi; Morisaki, Hiroko et al. (2010) Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59:2484-94
Sabeh, Farideh; Li, Xiao-Yan; Saunders, Thomas L et al. (2009) Secreted versus membrane-anchored collagenases: relative roles in fibroblast-dependent collagenolysis and invasion. J Biol Chem 284:23001-11
Ota, Ichiro; Li, Xiao-Yan; Hu, Yuexian et al. (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci U S A 106:20318-23

Showing the most recent 10 out of 26 publications