The discovery of kinase-specific inhibitors is intensely pursued within the pharmaceutical industry. In spite of multitude of X-ray structures for this protein family, it is increasingly apparent that a number of critical challenges must be overcome to make structure-based drug design (SBDD) a completely reliable tool for the discovery process, especially in the later phases of a drug discovery (lead optimization) that deal with balancing of potency with selectivity, in vivo target engagement, and pharmacokinetic profile. Even when multiple X-ray structures for a selected target are available, our knowledge of all the relevant conformations relevant for ligand binding remains limited, thus hindering the full potential of SBDD. Lack in inhibitor selectivity often leads to undesired side effects caused by off-target binding. But while thermodynamic binding equilibrium considerations are critical, it is also important to go beyond to explain and predict the association/dissociation kinetic rates and the residence time of inhibitors. The latter can strongly affect many aspects of in vivo pharmacokinetics. All these issues become especially important when trying to rationally design and optimize specific covalent inhibitors whose mode of action is sensitive to both thermodynamic and kinetic factors. There is an urgent need to begin to systematically overcome these challenges for technologies like SBDD to play an increasing role in the development of targeted therapies based on kinase-specific inhibitors. A research plan comprising of four specific aims is proposed to develop a comprehensive computational/theoretical framework in order to systematically overcome and address these challenges. Our computational framework will integrate the information from explicit-solvent molecular dynamics simulations, adaptive enhanced sampling strategies, transition pathways from the string method, de novo structure prediction, and Markov state models. Specifically, we will develop, test and validate an integrated computational approach to accurately predict and rank-order all the accessible conformational variants of a target protein; then expand this approach to de-novo predict and rank-order all the accessible binding poses of a ligand in a given kinase of interest. We will also develop, test and validate an integrated computational approach to quantitatively determine and predict the associate/dissociation rates kon and koff of ligand binding, then expand this approach to simulate the formation of covalent linkage (reversible and irreversible) between a ligand and a target kinase, accounting for binding mode and reactivity. Finally, the computational framework will be used to investigate the molecular determinants for the specificity of a novel family of pan-kinase probes and test whether they are compatible with genome-wide profiling. The entire computational framework will be automated and streamlined user- friendly tools will be freely distributed to the general community through our web site. All results of this work will be made publically accessible to the whole community through our web site.

Public Health Relevance

Proteins kinases are critical therapeutic targets for the treatment of cancer as well as other diseases. While the discovery of kinase-specific drugs is pursued by the pharmaceutical industry, overcoming important challenges arising from the complexity of structural flexibility of these proteins would greatly accelerate discovery of inhibitors. The development and validation of computational approaches is proposed to overcome these challenges and open new avenues for structure based design.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA093577-11A1
Application #
9383860
Study Section
Macromolecular Structure and Function D Study Section (MSFD)
Program Officer
Li, Jerry
Project Start
2002-04-01
Project End
2022-07-31
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
11
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Pond, Matthew P; Blachowicz, Lydia; Roux, Benoît (2018) 1H, 15N, and 13C resonance assignments of the intrinsically disordered SH4 and Unique domains of Hck. Biomol NMR Assign :
Meng, Yilin; Gao, Cen; Clawson, David K et al. (2018) Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J Chem Theory Comput 14:2721-2732
Meng, Yilin; Pond, Matthew P; Roux, Benoît (2017) Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Acc Chem Res 50:1193-1201
Fajer, Mikolai; Meng, Yilin; Roux, Benoît (2017) The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 121:3352-3363
Meng, Yilin; Roux, Benoît (2016) Computational study of the W260A activating mutant of Src tyrosine kinase. Protein Sci 25:219-30
Meng, Yilin; Shukla, Diwakar; Pande, Vijay S et al. (2016) Transition path theory analysis of c-Src kinase activation. Proc Natl Acad Sci U S A 113:9193-8
Martin, Eric; Knapp, Stefan; Engh, Richard A et al. (2015) Perspective on computational and structural aspects of kinase discovery from IPK2014. Biochim Biophys Acta 1854:1595-604
Meng, Yilin; Lin, Yen-lin; Roux, Benoît (2015) Computational study of the ""DFG-flip"" conformational transition in c-Abl and c-Src tyrosine kinases. J Phys Chem B 119:1443-56
Lin, Yen-Lin; Meng, Yilin; Huang, Lei et al. (2014) Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity. J Am Chem Soc 136:14753-62
Shukla, Diwakar; Meng, Yilin; Roux, Benoît et al. (2014) Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5:3397

Showing the most recent 10 out of 39 publications