Mre11, Nbs1 and Rad50 form a conserved protein complex that is required for the maintenance of genome stability. In humans, Nbs1 and Mre11 are linked to the Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively, and the affected patients are predisposed to cancer. The Mre11/Rad50/Nbs1 complex (MRN) plays a critical role in DNA double stranded break (DSB) repair and cell cycle checkpoint control, but the detailed mechanisms of how these functions are regulated during the cell cycle and in response to DNA damage are not clear. The entire genome needs to be faithfully replicated in S-phase, wherein genotoxic insults most easily occur during the period of active DNA metabolism. Thus, preserving genome integrity in S-phase is most demanding. Our proposed studies will focus on the investigation to understand the mechanisms underlying the critical roles of the Mre11/Rad50/Nbs1 complex (MRN) in preserving genome integrity, especially in mediating S-phase-associated damage responses. First, we will identify DNA damage-induced Mre11 phosphorylation by mass spectrometry analysis and investigate the biological significance of these phosphorylation events in intra-S- phase checkpoint control and DNA DSB repair. Second, we will determine the role of MRN in DSB repair and replication restart at collapsed forks. Since replication forks can stall and collapse when encountering replication obstacles, the function of MRN in repairing DSB at collapsed replication forks is critical for maintaining genome integrity in S-phase. Third, we will investigate the molecular basis underlying the role of MRN in the S-phase associated damage response. We will study the association of MRN with replication forks and understand the role of this interaction in checkpoint activation and damage repair in S-phase related events. These studies will provide significant insights into the molecular mechanisms underlying the critical function of MRN in the maintenance of genome stability and will shed light on how malfunction of this complex could lead to human diseases associated with cancer.

Public Health Relevance

Mutations in Nbs1 and Mre11 genes lead to human diseases, Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively, and the affected patients are predisposed to cancer. Understanding the role of the Mre11/Rad50/Nbs1 complex in DNA damage response and DNA damage repair will shed light on the cellular mechanisms that prevent genome instability and cancer. These studies will ultimately help develop therapeutic interventions for human diseases associated with genome instability and cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA102361-10
Application #
8264939
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Pelroy, Richard
Project Start
2003-07-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2014-05-31
Support Year
10
Fiscal Year
2012
Total Cost
$346,472
Indirect Cost
$163,637
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Makharashvili, Nodar; Tubbs, Anthony T; Yang, Soo-Hyun et al. (2014) Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 54:1022-33
Truong, Lan N; Li, Yongjiang; Sun, Emily et al. (2014) Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication. J Biol Chem 289:28910-23
Wang, Hailong; Li, Yongjiang; Truong, Lan N et al. (2014) CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell 54:1012-21
Truong, Lan N; Li, Yongjiang; Shi, Linda Z et al. (2013) Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A 110:7720-5
Wang, Hailong; Shao, Zhengping; Shi, Linda Z et al. (2012) CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks. J Biol Chem 287:21471-80
Lee, Alan Yueh-Luen; Chiba, Takuya; Truong, Lan N et al. (2012) Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J Biol Chem 287:2531-43
Truong, Lan N; Wu, Xiaohua (2011) Prevention of DNA re-replication in eukaryotic cells. J Mol Cell Biol 3:13-22
Chen, Longchuan; Nievera, Christian J; Lee, Alan Yueh-Luen et al. (2008) Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283:7713-20
Olson, Erin; Nievera, Christian J; Lee, Alan Yueh-Luen et al. (2007) The Mre11-Rad50-Nbs1 complex acts both upstream and downstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to regulate the S-phase checkpoint following UV treatment. J Biol Chem 282:22939-52
Liu, Enbo; Lee, Alan Yueh-Luen; Chiba, Takuya et al. (2007) The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. J Cell Biol 179:643-57

Showing the most recent 10 out of 13 publications