The overall goal of this biomedical research partnership is to couple cancer imaging and therapy using nanoparticles that provide ultrasonic activation, multimodality imaging, and efficient and stable drug transport. These methods enable efficacious drug delivery with minimal systemic toxicity in the treatment of multifocal and metastatic cancers, and in particular in melanoma, head and neck, prostate, and breast tumors. There is great momentum for image-guided interventions in general and image-guided drug delivery in particular, with many activatable particles under development. In our first grant cycle, we established the feasibility of ultrasound drug delivery to tumors, demonstrating that we can: target a significant fraction of drug carrying particles to tumors (averaging 20% of the injected dose per cubic centimeter of tissue following systemic administration), obtain a high (up to 33 dB) target-to-background ratio image of the vehicles within the cancerous lesion, image tumors with a diameter of 4 mm or greater, achieve at least a 50-fold increase in drug delivery to tumors (as compared with systemic administration of free model drugs), and demonstrate a therapeutic response in vivo with the combination of ultrasound and liposomal cisplatin in as little as 24 hours. We have also created ultrasound infrastructure for imaging and therapy, embedding therapeutic capabilities within the clinical ultrasound system of our partner Siemens Medical Solutions, creating a positron emission tomography (PET) labeling method for liposomes, synthesizing a near-infrared probe, and cross-validating these components. Our ultrasound imaging and therapy system can operate independently or in combination with PET and computed tomography (CT). The primary goal for this renewal is to establish efficacious infrastructure and protocols for ultrasound-enhanced particle-based drug delivery for the treatment of primary and metastatic tumors. In order to accomplish this goal we will create a combined PET-CT-US system for image-guided-interventions, optimize the 3D-ultrasound heating protocol, maximize the target-to-background ratio for guiding interventions with PET-CT-US, finalize the loading and formulation for an activatable cisplatin liposome and evaluate ultrasound-enhanced intravenous therapy under PET-CT guidance.

Public Health Relevance

Currently, one in 4 deathsin the United States is due to cancer. Available options for preemption and treatment are limited by the toxicity profiles of various drugs. As a result, substantial efforts have been directed to develop nanotechnology-based methods for increasing the efficacy and decreasing the toxicity of drug therapies. Using multifunctional particles for imaging and therapy, we have shown that ultrasound-enhanced drug delivery is feasible and efficacious. In the renewal, we will develop infrastructure and protocols for successful image- guided drug delivery in models of head and neck and metastatic breast cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-V (50))
Program Officer
Farahani, Keyvan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Biomedical Engineering
Schools of Engineering
United States
Zip Code
Dube, Nikhil; Seo, Jai W; Dong, He et al. (2014) Effect of alkyl length of peptide-polymer amphiphile on cargo encapsulation stability and pharmacokinetics of 3-helix micelles. Biomacromolecules 15:2963-70
Paoli, Eric E; Ingham, Elizabeth S; Zhang, Hua et al. (2014) Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes. J Control Release 178:108-17
Kusunose, J; Gagnon, M K J; Seo, J W et al. (2014) Quantitation of nanoparticle accumulation in flow using optimized microfluidic chambers. J Drug Target 22:48-56
Mahakian, Lisa M; Farwell, D Gregory; Zhang, Hua et al. (2014) Comparison of PET imaging with 64Cu-liposomes and 18F-FDG in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch model of oral dysplasia and squamous cell carcinoma. Mol Imaging Biol 16:284-92
Qin, Shengping; Fite, Brett Z; Gagnon, M Karen J et al. (2014) A physiological perspective on the use of imaging to assess the in vivo delivery of therapeutics. Ann Biomed Eng 42:280-98
Zhang, Guodong; Panigrahy, Dipak; Hwang, Sung Hee et al. (2014) Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc Natl Acad Sci U S A 111:11127-32
Chun-Yen Lai; Kruse, Dustin E; Ferrara, Katherine W et al. (2014) Creation and characterization of an ultrasound and CT phantom for noninvasive ultrasound thermometry calibration. IEEE Trans Biomed Eng 61:502-12
Seo, Jai Woong; Baek, Hyounggee; Mahakian, Lisa M et al. (2014) (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25:231-9
Thorsen, Frits; Fite, Brett; Mahakian, Lisa M et al. (2013) Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J Control Release 172:812-22
Zhang, Guodong; Panigrahy, Dipak; Mahakian, Lisa M et al. (2013) Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci U S A 110:6530-5

Showing the most recent 10 out of 67 publications