Targeted radionuclide therapy (TRT) plays an increasingly important role in treatment of a number of cancers including thyroid cancer and non-Hodgkins lymphoma. TRT agents for other cancers are at various stages of development. For example, locoregional therapy using Y-90 labeled microspheres for non-resectable liver tumors appears promising. For these therapies, dosimetry is an essential part of their development, approval, and validation. Dosimetry can help reduce adverse reactions in trials and provides insight into the reasons for failure or success of the therapeutic agents both in individuals and in populations. It also plays an important role in patient-specific treatment planning. Dose estimates in TRT are based on results of quantitative planar or SPECT imaging studies. Quantitative planar imaging, though widely used, involves ad hoc combinations of compensations for various image degrading effects, resulting in variable accuracy and precision. Image reconstruction methods available on commercial SPECT systems are typically designed and optimized for diagnostic procedures involving visual interpretation and not for quantification. In the previous funding period of this grant we developed quantitative SPECT reconstruction methods and validated them in the context of whole organ dosimetry. However, for tumors, locoregional therapy or radiolabeled peptides, 3D dosimetry is essential, which requires estimates of the 3D activity distribution in organs at the sub-organ level. The accuracy of activity distribution estimates is limited by image degrading factors, noise, and partial volume effects. The ability to image bremsstrahlung radiation from TRT agents that do not emit gamma rays could have a number of important applications, but is complicated by the continuous energy spectrum of primary photons and the resulting high levels of photon scatter. In this competing renewal, we propose to develop and optimize quantitative SPECT acquisition and reconstruction methods for TRT dosimetry applications. These will include SPECT reconstruction methods that model the image degrading effects for both gamma ray and bremsstrahlung radiation emitters. They will use 3D and 4D maximum a posteriori (MAP) methods to provide noise reduction and incorporate anatomical information to reduce partial volume effects. The 4D methods will also provide further noise reduction through optimized smoothing in the time dimension and incorporate registration into the reconstruction algorithm. We propose to optimize and validate these new quantitative SPECT methods using a combination of physical phantom, realistic simulation and animal studies and to apply them in clinical trials of several TRT agents. Finally, we will rigorously evaluate the accuracy and precision of these methods in comparison with conventional methods in simulated populations of phantoms. The result of this research will be a set of well-validated quantitative SPECT reconstruction methods with well-characterized accuracies and precisions. These methods would provide substantial improvements in 3D dose estimates, and thus in the ability to predict and understand biological response and optimize therapeutic doses for TRT.

Public Health Relevance

Reliable dosimetry of targeted radionuclide therapies (TRTs) for cancer could facilitate the development and approval of TRT agents and provide patient specific optimization for improved outcomes. The results of this research will provide reliable, well-validated and well-characterized quantitative imaging methods designed for TRT dosimetry applications that would provide the basis for more reliable dose estimates for improved cancer therapy outcomes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA109234-07
Application #
8332779
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Deye, James
Project Start
2004-07-01
Project End
2016-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
7
Fiscal Year
2012
Total Cost
$392,874
Indirect Cost
$145,377
Name
Johns Hopkins University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Vicente, Esther M; Lodge, Martin A; Rowe, Steven P et al. (2017) Simplifying volumes-of-interest (VOIs) definition in quantitative SPECT: Beyond manual definition of 3D whole-organ VOIs. Med Phys 44:1707-1717
Mena, Esther; Taghipour, Mehdi; Sheikhbahaei, Sara et al. (2017) Value of Intratumoral Metabolic Heterogeneity and Quantitative 18F-FDG PET/CT Parameters to Predict Prognosis in Patients With HPV-Positive Primary Oropharyngeal Squamous Cell Carcinoma. Clin Nucl Med 42:e227-e234
Jha, Abhinav K; Frey, Eric (2017) No-gold-standard evaluation of image-acquisition methods using patient data. Proc SPIE Int Soc Opt Eng 10136:
Mena, Esther; Sheikhbahaei, Sara; Taghipour, Mehdi et al. (2017) 18F-FDG PET/CT Metabolic Tumor Volume and Intratumoral Heterogeneity in Pancreatic Adenocarcinomas: Impact of Dual-Time Point and Segmentation Methods. Clin Nucl Med 42:e16-e21
Zimmerman, Brian E; Grošev, Darko; Buvat, Irène et al. (2017) Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification: An IAEA phantom study. Z Med Phys 27:98-112
Jha, Abhinav K; Caffo, Brian; Frey, Eric C (2016) A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods. Phys Med Biol 61:2780-800
Yue, Jianting; Mauxion, Thibault; Reyes, Diane K et al. (2016) Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer. Med Phys 43:5779
Jha, Abhinav K; Frey, Eric C (2015) Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems. Proc SPIE Int Soc Opt Eng 9412:94120R
Jha, Abhinav K; Song, Na; Caffo, Brian et al. (2015) Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth. Proc SPIE Int Soc Opt Eng 9416:94161K
Anizan, N; Wang, H; Zhou, X C et al. (2015) Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source. Phys Med Biol 60:1325-37

Showing the most recent 10 out of 34 publications