Progressive cognitive impairment occurs in up to 50% of primary and metastatic brain tumor patients who survive 6 months or longer after treatment with partial or whole-brain irradiation (WBI);~200,000 patients/year receive these treatments. A growing body of evidence suggests that oxidative stress and pro-inflammatory responses play a critical role in radiation-induced brain injury. These observations provide the rationale for investigating anti-inflammatory-based therapeutic approaches to ameliorate or prevent radiation-induced brain injury. This competitive renewal will focus on the role of the peroxisomal proliferator-activated receptors ? and ? (PPAR?, PPAR?) in ameliorating or preventing radiation-induced brain injury, including cognitive impairment. These PPARs are potent mediators of anti-inflammatory responses. During the current funding period, we have demonstrated that i) administration of the PPAR? agonist, pioglitazone, prevents fractionated WBI- induced cognitive impairment in young adult male rats;ii) the irradiated brains of PPAR? KO mice have increased microglial activation, iii] administration of the PPAR? agonist, fenofibrate, prevents both WB-induced microglial activation and decreased neurogenesis, and iii) pre-treatment of microglial cells with PPAR? agonists prevents radiation-induced increases in inflammation. In this competitive renewal, we propose to extend our PPAR? studies and initiate studies on PPAR?, increasingly recognized as a promising pharmacological target for neuroprotection. We hypothesize that administration of PPAR? and/or PPAR? agonists will not only ameliorate or prevent radiation-induced brain injury, including cognitive impairment, but will also inhibit brain tumor growth. To test this hypothesis, we will pursue the following Specific Aims: 1] using a fractionated WBI rat model, we will determine if administration of PPAR? or PPAR? agonists will ameliorate or prevent radiation-induced brain injury, including cognitive impairment;2] using PPAR? KO mice, we will determine if i] knocking down PPAR? will increase radiation-induced brain injury, and ii] if administering a PPAR? agonist will ameliorate or prevent radiation-induced brain injury through PPAR?- dependent mechanisms;3] using murine hippocampal neurons and microglial cells, we will determine if incubating these cells with PPAR? agonists modulates radiation-induced changes in cellular phenotype via inhibition of pro-inflammatory signaling pathways and/or upregulation of anti-inflammatory mediators;and 4] using human glioma cell lines and immortalized normal glial cells, we will determine if treating with PPAR? or PPAR? agonists leads to selective glioma cell kill. Further, we will use an in vivo orthotopic rat model to determine if administering PPAR? or PPAR? agonists, alone or in combination with ionizing radiation, inhibits tumor growth and increases survival times. Successful completion of these aims will serve as the foundation for translating these findings into clinical trials designed to enhance the quality of life and long-term survival of cancer patients receiving partial or WBI. .

Public Health Relevance

Approximately 100,000 cancer patients per year survive long enough after partial or WBI to develop radiation- induced injury, including cognitive impairment. No successful long-term treatments for radiation-induced brain injury are currently available nor are there any effective preventive strategies. The establishment of an interventional role for PPAR? and/or PPAR? in radiation-induced brain injury should lead to the rapid translation of these preclinical findings to the clinic, thereby, increasing the therapeutic window for cancer patients receiving partial or WBI as well as impacting both on their quality of life and their long-term survival.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Prasanna, Pat G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
Schools of Medicine
United States
Zip Code
Wheeler, Kenneth T; Payne, Valerie; D'Agostino Jr, Ralph B et al. (2014) Impact of breathing 100% oxygen on radiation-induced cognitive impairment. Radiat Res 182:580-5
Moore, Elizabeth D; Kooshki, Mitra; Wheeler, Kenneth T et al. (2014) Differential expression of Homer1a in the hippocampus and cortex likely plays a role in radiation-induced brain injury. Radiat Res 181:21-32
Greene-Schloesser, Dana; Payne, Valerie; Peiffer, Ann M et al. (2014) The peroxisomal proliferator-activated receptor (PPAR) ? agonist, fenofibrate, prevents fractionated whole-brain irradiation-induced cognitive impairment. Radiat Res 181:33-44
Greene-Schloesser, Dana M; Kooshki, Mitra; Payne, Valerie et al. (2014) Cellular response of the rat brain to single doses of (137)Cs ? rays does not predict its response to prolonged 'biologically equivalent' fractionated doses. Int J Radiat Biol 90:790-8
Hutchinson, Ian D; Olson, John; Lindburg, Carl A et al. (2014) Total-body irradiation produces late degenerative joint damage in rats. Int J Radiat Biol 90:821-30
Peiffer, Ann M; Creer, Rebecca M; Linville, Constance et al. (2014) Radiation-induced cognitive impairment and altered diffusion tensor imaging in a juvenile rat model of cranial radiotherapy. Int J Radiat Biol 90:799-806
Moore, Elizabeth D; Kooshki, Mitra; Metheny-Barlow, Linda J et al. (2013) Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med 65:1060-1068
Greene-Schloesser, Dana; Moore, Elizabeth; Robbins, Mike E (2013) Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res 19:2294-300
Greene-Schloesser, Dana; Schnegg, Caroline I; Robbins, Mike E (2013) Behavioral paradigms to evaluate PPAR modulation in animal models of brain injury. Methods Mol Biol 952:325-36
Schnegg, Caroline I; Greene-Schloesser, Dana; Kooshki, Mitra et al. (2013) The PPAR? agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med 61:1-9

Showing the most recent 10 out of 27 publications