Lung cancer is the leading cause of cancer related deaths in the United States. Radiation therapy, either alone or in combination with systemic chemotherapy, is one of the main treatment modalities for locally advanced non-small cell lung cancer (NSCLC). Recently, driven by a better understanding of the molecular oncogenic drivers involved in lung tumorigenesis, targeted systemic therapies have been developed clinically to generate higher response rates and longer overall survival in a genetically stratified population of lung cancer patients. For example, erlotinib and gefitinib have produced up to 85 percent response rates and longer overall survival in patients with NSCLC who harbor selective EGFR kinase domain (KD) mutations when compared to conventional chemotherapies. However, our understanding of how specific oncogenic drivers in NSCLC impact their sensitivity to radiation therapy or combination chemo-radiation therapy is limited and has not been systematically studied in vivo pre- clinically. In this proposal, as outlined in the specific aims below, we propose to employ our well characterized genetically engineered mouse models of lung cancer based on inducible lung epithelium specific expression of the common lung cancer relevant oncogenic drivers (EGFR kinase domain mutants, EGFRvIII mutant and KRAS mutants) along with the latest small animal focal irradiator platform to dissect the differential sensitivity of the defined oncogene driven lung cancer to radiation therapy and combined chemo-radiation therapy in vivo. Data from the successful completion of the aims will help facilitate the identification of genotype specific lung cancers that are radiosensitive, help rationally integrate radiation therapy with targeted therapeutics and, thus, advance the care and treatment of lung cancer patients.

Public Health Relevance

Lung cancer is the leading cause of cancer related deaths in the United States. Experiments proposed in this grant will help identify genetic subtypes of lung cancers that are sensitive to radiation treatment, and thus, help advance the care and treatment of lung cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Forry, Suzanne L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Nakayama, Sohei; Sng, Natasha; Carretero, Julian et al. (2014) ?-catenin contributes to lung tumor development induced by EGFR mutations. Cancer Res 74:5891-902
Chen, Zhao; Akbay, Esra; Mikse, Oliver et al. (2014) Co-clinical trials demonstrate superiority of crizotinib to chemotherapy in ALK-rearranged non-small cell lung cancer and predict strategies to overcome resistance. Clin Cancer Res 20:1204-11
Herter-Sprie, Grit S; Korideck, Houari; Christensen, Camilla L et al. (2014) Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat Commun 5:5870
Lau, Allison N; Curtis, Stephen J; Fillmore, Christine M et al. (2014) Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J 33:468-81
Lovly, Christine M; McDonald, Nerina T; Chen, Heidi et al. (2014) Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat Med 20:1027-34
Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J et al. (2014) Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26:909-22
Chen, Zhao; Fillmore, Christine M; Hammerman, Peter S et al. (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535-46
Hata, Aaron N; Yeo, Alan; Faber, Anthony C et al. (2014) Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res 74:3146-56
Akbay, Esra A; Moslehi, Javid; Christensen, Camilla L et al. (2014) D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev 28:479-90
Xu, Chunxiao; Fillmore, Christine M; Koyama, Shohei et al. (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25:590-604

Showing the most recent 10 out of 50 publications