The objective of this project is to integrate metabolic and physiologic MR imaging data into the clinical management of patients with newly diagnosed glioblastoma multiforme (GBM) who are being treated with combined radiation, chemo and antiangiogenic therapy. Our current studies have provided strong evidence that Magnetic Resonance Spectroscopic Imaging (MRSI), Perfusion Weighted imaging (PWI) and Diffusion Weighted Imaging (DWI) produce information concerning the biological behavior of such lesions that is likely to be valuable for clinical decision making. We propose to explore the impact of these imaging methods with respect to quantifying changes in imaging parameters and assessing therapeutic response in patients treated with concurrent Enzastaurin, Temozolomide and Radiation Therapy (ETRT), a therapeutic strategy that combines cytotoxic and antiangiogenic approaches. The first area that is of interest is to validate the biological interpretation of selected imaging variables presumed to be representative surrogates for tumor extent, heterogeneity, and therapeutic responsiveness, as well as prognostic significance with respect to survival. The second area of interest is in evaluating imaging characteristics prior to ETRT and their short and longer term changes that occur as a result of ETRT in order to quantify and assess treatment response. Previous studies have not utilized state of the art metabolic and physiologic imaging methods to select patients, to identify microscopic disease and heterogeneity or to evaluate response to therapy. We believe that it is critical to determine whether this approach is feasible and to obtain evidence that would help in deciding how to best integrate such information into future clinical trials.
Specific Aim 1 will provide direct correlation between specific in vivo imaging and tissue characteristics by immunohistochemical and ex vivo NMR spectroscopy of image guided surgical samples from patients with newly diagnosed GBM. This will establish the link between in vivo and ex vivo MR parameters and biological behavior as defined by molecular morphology.
Specific Aim 2 will analyze the characteristics of GBM in patients who are participating in an institutional Phase II clinical trial of ETRT. It will examine the relationship between pre-ETRT MR parameters and subsequent imaging changes at multiple time points up to 6 months after completion of RT. While the focus of this proposal is on one specific clinical trial, the knowledge that will be gained has broad implications for selecting and designing many other types of antiangiogenic and molecularly targeted therapies and is likely to enhance the non-invasive imaging based interpretation of treatment response, change the definition of tumor burden in patients with GBM as well as improve patient selection for future clinical trials.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Biomarkers Study Section (CBSS)
Program Officer
Henderson, Lori A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Li, Yan; Larson, Peder; Chen, Albert P et al. (2015) Short-echo three-dimensional H-1 MR spectroscopic imaging of patients with glioma at 7 Tesla for characterization of differences in metabolite levels. J Magn Reson Imaging 41:1332-41
Elkhaled, Adam; Jalbert, Llewellyn; Constantin, Alexandra et al. (2014) Characterization of metabolites in infiltrating gliomas using ex vivo ¹H high-resolution magic angle spinning spectroscopy. NMR Biomed 27:578-93
Lupo, Janine M; Nelson, Sarah J (2014) Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma. Semin Radiat Oncol 24:248-58
Li, Yan; Lupo, Janine M; Parvataneni, Rupa et al. (2013) Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro Oncol 15:607-17
Ozhinsky, Eugene; Vigneron, Daniel B; Chang, Susan M et al. (2013) Automated prescription of oblique brain 3D magnetic resonance spectroscopic imaging. Magn Reson Med 69:920-30
Constantin, Alexandra; Elkhaled, Adam; Jalbert, Llewellyn et al. (2012) Identifying malignant transformations in recurrent low grade gliomas using high resolution magic angle spinning spectroscopy. Artif Intell Med 55:61-70
Ozhinsky, Eugene; Vigneron, Daniel B; Nelson, Sarah J (2011) Improved spatial coverage for brain 3D PRESS MRSI by automatic placement of outer-volume suppression saturation bands. J Magn Reson Imaging 33:792-802
Li, Yan; Lupo, Janine M; Polley, Mei-Yin et al. (2011) Serial analysis of imaging parameters in patients with newly diagnosed glioblastoma multiforme. Neuro Oncol 13:546-57
Park, Ilwoo; Chen, Albert P; Zierhut, Matthew L et al. (2011) Implementation of 3 T lactate-edited 3D 1H MR spectroscopic imaging with flyback echo-planar readout for gliomas patients. Ann Biomed Eng 39:193-204
Nelson, Sarah J (2011) Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. NMR Biomed 24:734-49

Showing the most recent 10 out of 14 publications