Carbon nanotubes are graphene sheets of sp2 bonded atoms rolled seamlessly into a tube of 1.5 - 20 nm in diameter. This material has unique properties, including the ability to generate heat when stimulated with infrared light. We have used the features of nanotubes to develop prototype multifunctional multiwalled carbon nanotubes that have the potential to simultaneously image and treat tumors. Our hypothesis is that we can create multifunctional nanotubes that can be used to image and treat mouse models of human renal cell carcinoma. In this application will test this hypothesis by fabricating carbon-based nanotubes of different lengths, architectures and composition. We will assess the ability of these nanotubes to function as anti-tumor agents in tissue culture and in mouse models. We will test their ability to generate heat when stimulated with light, and their ability to act as imaging agents. Mathematical modeling will be performed to optimize placement of ferrotubes for optimal heat delivery in tissues. We will optimize treatment schedule for maximal antitumor effect with minimal damage to adjacent tissues. Ultimately, our objective is a therapy that can be precisely directed, exhibits low nonspecific toxicity, is compatible with standard clinical imaging instruments, and is easily cleared by the body. In this application, we will use tissue culture and mouse models to take the first steps in characterizing the features of nanotubes that will permit their use in tumor imaging and cancer therapy.

Public Health Relevance

Carbon nanotubes may represent a new way to image and treat kidney and other cancers. In this application we fabricate new nanostructures, test their anti-cancer efficacy in tissue culture and mouse models, and use mathematical modeling to optimize their use.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-NANO-M (01))
Program Officer
Prasanna, Pat G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Connecticut
Schools of Medicine
United States
Zip Code
Fahrenholtz, Cale D; Hadimani, Mallinath; King, S Bruce et al. (2015) Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine (Lond) 10:2481-97
Singh, Ravi; Torti, Suzy V (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65:2045-60
Whitney, Jon; DeWitt, Matthew; Whited, Bryce M et al. (2013) 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. Nanotechnology 24:275102
Whitney, Jon R; Rodgers, Amanda; Harvie, Erica et al. (2012) Spatial and temporal measurements of temperature and cell viability in response to nanoparticle-mediated photothermal therapy. Nanomedicine (Lond) 7:1729-42
Narayanan, Tharangattu N; Gupta, Bipin K; Vithayathil, Sajna A et al. (2012) Hybrid 2D nanomaterials as dual-mode contrast agents in cellular imaging. Adv Mater 24:2992-8
Burke, Andrew R; Singh, Ravi N; Carroll, David L et al. (2012) The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 33:2961-70
Xie, Bin; Singh, Ravi; Torti, F M et al. (2012) Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers. Phys Med Biol 57:5765-75
Ding, Xuanfeng; Singh, Ravi; Burke, Andrew et al. (2011) Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine (Lond) 6:1341-52
Burke, Andrew R; Singh, Ravi N; Carroll, David L et al. (2011) Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32:5970-8
Neal 2nd, Robert E; Singh, Ravi; Hatcher, Heather C et al. (2010) Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res Treat 123:295-301

Showing the most recent 10 out of 13 publications