Self-renewal and differentiation are fundamental characteristics of all stem/progenitor cells. During mammalian development stem/progenitor cells use cell polarity mechanisms to divide asymmetrically to renew themselves and generate daughters that stop proliferation and differentiate. Similar mechanisms are used for self-renewal and differentiation of adult stem cells. Failure of asymmetric cell divisions in stem cells may result in inability to withdraw from cell cycle, perturbations of normal brain development and cancer. Alternatively, failure of stem cell self-renewal can cause depletion of stem cells, decline in tissue regenerative potential and premature aging. The molecular mechanisms governing cell polarity and asymmetric cell divisions of mammalian stem/progenitor cells and their role in aging and cancer are still poorly understood. This proposal focuses on cell polarity proteins, Lethal giant larvae 1 and 2 (Lgl1 and Lgl2), which represent the mammalian orthologs of Drosophila neoplastic tumor-suppressor protein Lgl. We have evidence that Lgl1 is necessary for regulation of asymmetric cell division of neural progenitor cells during early neurogenesis and loss of Lgl1 results in abnormal accumulation of progenitors that fail to withdraw from the cell cycle. Neonatal death of Lgl1-/- mice precluded us from the analysis of potential tumor- suppressor role of Lgls in adult animals and their role in self-renewal of adult stem cells. In this proposal we will use a variety of conditional gene knockout and biochemical approaches to investigate the potential in vivo role and significance of the entire Lgl gene family and molecular mechanisms responsible for function of Lgl proteins in regulation of stem/progenitor cell self-renewal and differentiation. These studies will help to extend our knowledge of the mechanisms of self-renewal and differentiation of mammalian stem/progenitor cells. This information will be useful for future development of efficient regenerative, anti-aging and anti-cancer therapies.

Public Health Relevance

Studies described in this proposal will help to understand how stem cells are maintained in the adult mammalian organism and whether abnormalities with stem cells are responsible for cancer. Knowledge obtained during this study will help to develop new therapies for treatment of tissue injury, degenerative diseases and cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Woodhouse, Elizabeth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Jossin, Yves; Lee, Minhui; Klezovitch, Olga et al. (2017) Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells. Dev Cell 41:481-495.e5
Kwan, Julian; Sczaniecka, Anna; Heidary Arash, Emad et al. (2016) DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 30:2696-2709
Wang, Shih-Hsiu J; Celic, Ivana; Choi, Se-Young et al. (2014) Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization. J Neurosci 34:12745-61
Klezovitch, Olga; Vasioukhin, Valeri (2013) Your gut is right to turn left. Dev Cell 26:553-4
Nechiporuk, Tamilla; Klezovitch, Olga; Nguyen, Liem et al. (2013) Dlg5 maintains apical aPKC and regulates progenitor differentiation during lung morphogenesis. Dev Biol 377:375-84
Clark, Brian S; Cui, Shuang; Miesfeld, Joel B et al. (2012) Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis. Development 139:1599-610
Sripathy, Smitha; Lee, Minhui; Vasioukhin, Valeri (2011) Mammalian Llgl2 is necessary for proper branching morphogenesis during placental development. Mol Cell Biol 31:2920-33
Silvis, Mark R; Kreger, Bridget T; Lien, Wen-Hui et al. (2011) ?-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33
Chang, Yoonjeung; Klezovitch, Olga; Walikonis, Randall S et al. (2010) Discs large 5 is required for polarization of citron kinase in mitotic neural precursors. Cell Cycle 9:1990-7