Death from cancer, especially melanoma, is most often related to metastasis. As the quantitative detection of rare cancer cells in the blood circulation appears to be an early marker of metastatic development, cancer recurrence, and therapeutic efficacy, and as assays for detecting metastatic cells are currently only in vitro techniques that are inadequate to these tasks, our proposal has as its ultimate goal the development of photoacoustic (PA) flow cytometry (FC) in vivo, a new method for ultrasensitive real-time, label-free noninvasive quantitative detection of circulating melanoma cells in blood flow. We will pursue this goal through accomplishment of the following Specific Aims:
Aim 1. Develop an advanced PA flow cytometer (PAFC) and verify its parameters in vitro. A new, advanced PA flow cytometer will be developed that uses a near- infrared (IR) laser with a high pulse repetition rate. Its main characteristics, especially its sensitivity threshold, will be evaluated in vitro with the use of static and flowing melanoma cells.
Aim 2. Estimate the capability of PAFC to detect single melanoma cells in real time in vivo in an animal model. The absorption contrast of melanoma cells in relation to blood and skin tissues will be determined by PA spectroscopy in vivo in a mouse model at different laser wavelengths. The capability of PAFC for real-time, label-free detection of melanoma cells will be verified by the injection of cells into the tail veins of mice.
Aim 3. Ascertain the capability of PAFC to monitor circulating metastatic melanoma cells at different stages of tumor development in an animal model. Metastatic tumor cells will be detected in real time with the PA technique in blood circulation in an animal model at different stages of tumor development, with available conventional assays serving as independent controls.
Aim 4. Translate PAFC to human application for quantitative monitoring of CTCs at different stages of melanoma development. The capability of a painless, non-invasive, label-free, fiber- based PAFC for quantitative detection of circulating melanoma cells in vivo in humans will be assessed in four stages: (1) ex vivo PA study of blood samples from healthy donors spiked with melanoma human cell lines;(2) ex vivo PA study of blood samples from melanoma patients verified with conventional assays;(3) in vivo study of healthy individuals as a control group with different skin pigmentation;and 4) melanoma patients at different stages of disease. In the course of this study, we will obtain statistically significant data that will demonstrate this innovative technique's unprecedented capability for quantitatively monitoring circulating melanoma cells in vivo without the need for labeling. The benefits to the public health of achieving this goal extend to routinely monitoring circulating tumor cells as early marker for the micrometastasis development and cancer recurrence in vivo in melanoma patients, as well as to evaluating the efficacy of therapy.

Public Health Relevance

The capability of a painless, noninvasive, label-free, fiber-based photoacoustic flow cytometry (PAFC) for selective, time-resolved detection of PA signals from different vessels will be assessed in (1) Caucasian and African American healthy volunteers and (2) melanoma patients at different stages of disease, in whom circulating metastatic melanoma cells will be quantitatively determined. In the course of this study, we will obtain statistically significant data that will demonstrate this innovative technique's unprecedented capability for quantitatively monitoring circulating melanoma cells in vivo without the need for labeling. The benefits to the public health of achieving this goal extend to the routine monitoring of circulating cells as early markers of micrometastatic development and cancer recurrence in vivo in melanoma patients, as well as to evaluating the efficacy of therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA131164-05
Application #
8447372
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Sorbara, Lynn R
Project Start
2009-03-19
Project End
2015-01-31
Budget Start
2013-02-01
Budget End
2015-01-31
Support Year
5
Fiscal Year
2013
Total Cost
$259,354
Indirect Cost
$70,155
Name
University of Arkansas for Medical Sciences
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Nedosekin, Dmitry A; Galanzha, Ekaterina I; Dervishi, Enkeleda et al. (2014) Super-resolution nonlinear photothermal microscopy. Small 10:135-42
Foster, Stephen R; Galanzha, Ekaterina I; Totten, Daniel C et al. (2014) Photoacoustically-guided photothermal killing of mosquitoes targeted by nanoparticles. J Biophotonics 7:465-73
Sarimollaoglu, Mustafa; Nedosekin, Dmitry A; Menyaev, Yulian A et al. (2014) Nonlinear photoacoustic signal amplification from single targets in absorption background. Photoacoustics 2:1-11
Nima, Zeid A; Mahmood, Meena; Xu, Yang et al. (2014) Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep 4:4752
Nedosekin, Dmitry A; Verkhusha, Vladislav V; Melerzanov, Alexander V et al. (2014) In vivo photoswitchable flow cytometry for direct tracking of single circulating tumor cells. Chem Biol 21:792-801
Kim, Jin-Woo; Galanzha, Ekaterina I; Zaharoff, David A et al. (2013) Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Mol Pharm 10:813-30
Nedosekin, Dmitry A; Juratli, Mazen A; Sarimollaoglu, Mustafa et al. (2013) Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. J Biophotonics 6:523-33
Shao, Jingwei; Griffin, Robert J; Galanzha, Ekaterina I et al. (2013) Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep 3:1293
Nedosekin, Dmitry A; Galanzha, Ekaterina I; Ayyadevara, Srinivas et al. (2012) Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores. Biophys J 102:672-81
Nedosekin, Dmitry A; Khodakovskaya, Mariya V; Biris, Alexandru S et al. (2011) In vivo plant flow cytometry: a first proof-of-concept. Cytometry A 79:855-65

Showing the most recent 10 out of 31 publications