Tumor hypoxia has been associated with tumor progression, a higher risk of metastatic spread, and resistance to therapy, and has thus become a central issue in tumor physiology and cancer treatment. To date, very little is known about the molecular pathways that are affected by tumor hypoxia, and which eventually cause the disastrous clinical effects of poor cancer prognosis and poor treatment outcome. Hypoxia-inducible factor 11 (HIF-11), whose levels increase under hypoxic conditions, plays an important role in tumor hypoxia as it affects the levels of other biomolecules. Because currently little is known about the key biomolecules in tumor hypoxia, we will seek to identify to date unknown molecules that are increased or decreased in hypoxic regions in breast tumors. We will use a unique model system to study hypoxia, which consists of human breast cancer cell lines and the corresponding tumor models grown in immune-compromised animals that were genetically engineered to contain a built-in hypoxia detector . This detector couples the natural hypoxia response of increased HIF-11 to the production of a fluorescent marker that can be detected by optical imaging. We will combine optical hypoxia detection with in vivo magnetic resonance spectroscopic imaging (MRSI), cutting- edge mass spectrometry imaging (MSI) applications, and targeted proteomics strategies. In our first specific aim, we will discover, identify, and validate biomolecules that are decreased or increased due to hypoxia in breast cancer cell cultures. We will compare three human breast cell lines representing different degrees of aggressiveness and metastatic potential that have been made hypoxic in the laboratory. In our second specific aim, we will carry out parallel studies in actual breast tumor models grown from the same breast cancer cells lines, which contain the built-in hypoxia detector . We will analyze the hypoxic regions in these breast tumors using the same MS-based proteomics approach as in the cell lines. In the third specific aim, we will evaluate the hypoxia-related biomolecules initially identified in Aims 1 and 2 using a multimodal 3D molecular imaging approach, which will combine in vivo MRSI, optical imaging, and MSI methods. MRS, optical, and MS images will be acquired of the same breast tumor models containing the built-in hypoxia detector , which will enable us to assess the spatial relationship between hypoxia, already known hypoxia marker molecules, and our newly identified hypoxia-related molecules. Our studies will lead to a better understanding of the molecular pathways that are triggered by hypoxia in breast tumors. The proposed studies may eventually translate into new breast cancer therapies for patients that have hypoxic regions in their tumors. Future studies can explore possibilities to use these newly discovered hypoxia-related molecules as targets for treating tumor hypoxia, and hopefully improve the treatment outcome of cancer patients with hypoxic breast tumors.

Public Health Relevance

Hypoxia renders breast tumors aggressive, metastatic, and resistant to treatment with radio- and chemotherapy. To date, very few molecular key players in tumor hypoxia, such as for example hypoxia inducible factor 11 (HIF-11), have been discovered. Discovering and validating relevant hypoxia-driven pathways, which potentially confer radio- and chemoresistance and tumor aggressiveness in hypoxic tumors, will be of crucial importance to overcome these detrimental effects of breast tumor hypoxia. In our application, we aim to elucidate such to date unknown molecular pathways that are produced in the heterogeneous hypoxic regions of solid breast tumors. Such hypoxia-related biomolecules may, in the future, provide novel molecular targets for innovative hypoxia-targeted breast cancer therapies.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MEDI-A (09))
Program Officer
Knowlton, John R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Gadiya, Mayur; Mori, Noriko; Cao, Maria D et al. (2014) Phospholipase D1 and choline kinase-? are interactive targets in breast cancer. Cancer Biol Ther 15:593-601
Wijnen, Jannie P; Jiang, Lu; Greenwood, Tiffany R et al. (2014) 1H/31P polarization transfer at 9.4 Tesla for improved specificity of detecting phosphomonoesters and phosphodiesters in breast tumor models. PLoS One 9:e102256
Penet, Marie-France; Krishnamachary, Balaji; Chen, Zhihang et al. (2014) Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv Cancer Res 124:235-56
Wijnen, J P; Jiang, L; Greenwood, T R et al. (2014) Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by (31) P MRS. NMR Biomed 27:692-9
Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R et al. (2013) Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J Lipid Res 54:333-44
Chughtai, Kamila; Jiang, Lu; Post, Harm et al. (2013) Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts. J Am Soc Mass Spectrom 24:711-7
Jiang, Lu; Greenwood, Tiffany R; van Hove, Erika R Amstalden et al. (2013) Combined MR, fluorescence and histology imaging strategy in a human breast tumor xenograft model. NMR Biomed 26:285-98
Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R et al. (2012) Fiducial markers for combined 3-dimensional mass spectrometric and optical tissue imaging. Anal Chem 84:1817-23
Glunde, Kristine; Bhujwalla, Zaver M; Ronen, Sabrina M (2011) Choline metabolism in malignant transformation. Nat Rev Cancer 11:835-48
Glunde, Kristine; Jiang, Lu; Moestue, Siver A et al. (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed 24:673-90

Showing the most recent 10 out of 18 publications