An advance in adoptive T cell therapy is the ability to endow patient's T cells with reactivity for tumor cell surface molecules through the introduction of genes that encode synthetic chimeric antigen receptors (CARs). Studies of small numbers of patients with advanced B cell malignancies have demonstrated potent antitumor effects of T cells that express a CD19-specific CAR in a subset of patients, suggesting this approach could provide a major advance in therapy. However, not all patients respond and the duration of response remains uncertain. Prior studies have not rigorously defined the phenotypic composition or frequency of CAR T cells administered to patients, which has resulted in variations in potency and in vivo persistence, and could explain the lack of efficacy in many patients. Our group has focused on elucidating cell intrinsic properties of human T cells that provide for reproducible in vivo behavior after genetic modification and adoptive transfer, and on optimizing the design of CARs for tumor recognition and safety. We initiated the first clinical tril of CD19 CAR- T cell therapy in which the T cell products administered to every patient were formulated in a defined optimized composition. The initial results have revealed profound tumor regressions in patients with advanced chemotherapy refractory NHL after infusion of small doses of CD19 CAR-T cells. This proposal will build on these accomplishments and develop CD19 CAR T cell therapy into a reproducible, broadly effective and safe therapy for B cell malignancies.
The specific aims are:
Aim 1. To evaluate the safety, antitumor efficacy, and mechanisms of tumor escape after adoptive transfer of CD19 CAR-T cells administered in a defined cell product composition in patients with refractory B cell lymphoma or leukemia.
Aim 2. To evaluate the safety and durability of antitumor responses of CD19 CAR-T cells derived from TM cells for therapy of ALL and CLL after HLA matched related or unrelated allogeneic HCT.
Aim 3 : To perform a phase I clinical trial to determine if adoptively transferred CD19 CAR-T cells that co-express a truncated human EGFR can be deleted in vivo by infusion of the anti-EGFR mAb, Erbitux.

Public Health Relevance

Immunotherapy is emerging as a new and effective modality for cancer therapy. One of the most promising approaches is to engineer the patient's T cells to express a synthetic receptor that instructs the T cell to seek out and eliminate cancer cells. The studies in this application focus on translating this approach into a reproducible and safe therapy for patients with leukemia and lymphoma.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Clinical Oncology Study Section (CONC)
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani et al. (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 126:4262-4272
Busch, Dirk H; Fräßle, Simon P; Sommermeyer, Daniel et al. (2016) Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol 28:28-34
Turtle, Cameron J; Hanafi, Laïla-Aïcha; Berger, Carolina et al. (2016) Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8:355ra116
Zah, Eugenia; Lin, Meng-Yin; Silva-Benedict, Anne et al. (2016) T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res 4:498-508
Liu, Lingfeng; Sommermeyer, Daniel; Cabanov, Alexandra et al. (2016) Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol 34:430-4
Gardner, Rebecca; Wu, David; Cherian, Sindhu et al. (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127:2406-10
Sommermeyer, D; Hudecek, M; Kosasih, P L et al. (2016) Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30:492-500
Turtle, Cameron J; Hanafi, Laïla-Aïcha; Berger, Carolina et al. (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126:2123-38
Hudecek, Michael; Sommermeyer, Daniel; Kosasih, Paula L et al. (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3:125-35
June, Carl H; Riddell, Stanley R; Schumacher, Ton N (2015) Adoptive cellular therapy: a race to the finish line. Sci Transl Med 7:280ps7

Showing the most recent 10 out of 34 publications