Inherited mutations in the Breast Cancer 1 and 2 genes (BRCA1 and BRCA2) confer high penetrance breast and ovarian cancer phenotypes. BRCA1 and BRCA2 maintain genomic integrity through error-free mechanisms of DNA double strand break repair known as homologous recombination. While deficiency in homologous recombination predisposes individuals to malignancy, it also sensitizes cells to commonly used anti-cancer agents. The molecular determinants that influence homologous recombination efficiency at a double strand break however, are largely unknown. We have recently published that BRCA1 is targeted to lysine63-linked ubiquitin (K63-Ub) structures at DNA damage sites along with a K63-Ub-specific deubiquitinating enzyme (DUB), BRCC36, by the ubiquitin-binding protein Rap80. Emerging evidence has revealed that double strand break associated K63-Ub is synthesized by the Ubc13 E2 enzyme in conjunction with the RNF8 and RNF168 E3 ubiquitin ligases. Our preliminary findings demonstrate that opposing activities of ubiquitin synthesis and breakdown potently influence DNA repair mechanisms. This regulatory loop consisting of Ubc13 directed ubiquitin synthesis and BRCC36 directed DUB activities thus provides an attractive target to control DNA repair mechanism. The major goals of this proposal are (1) to test the hypothesis that double strand break associated ubiquitin levels influence DNA end resection (2) to determine how BRCA1 interaction with the core Rap80 complex influences DNA repair, and (3) to determine if BRCA1 and BRCA2 mutant cells are particularly sensitive to deficiency of Rap80-BRCC36 directed DUB activity. We seek to reveal fundamental biological insights into how ubiquitin modifications at DNA double strand breaks influence DNA repair. These studies have considerable relevance to understanding both tumor suppression and responses to anti-cancer chemotherapy.

Public Health Relevance

The Breast Cancer 1 (BRCA1), which is mutated in familial forms of breast and ovarian cancer, is required for efficient DNA double strand break repair (DSB). BRCA1- dependent DNA repair is required for tumor suppression and response to anti-cancer chemotherapy. Thus a detailed temporal and spatial knowledge of how breaks are recognized and repaired has profound implications for understanding processes related to the genesis of malignancy and to its treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA138835-04
Application #
8386942
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Pelroy, Richard
Project Start
2009-12-01
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
4
Fiscal Year
2013
Total Cost
$302,718
Indirect Cost
$113,519
Name
University of Pennsylvania
Department
Biology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sawyer, Sarah L; Tian, Lei; Kähkönen, Marketta et al. (2015) Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov 5:135-42
Cho, Nam Woo; Dilley, Robert L; Lampson, Michael A et al. (2014) Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:108-21
Li, Mischa L; Yuan, Gang; Greenberg, Roger A (2014) Chromatin yo-yo: expansion and condensation during DNA repair. Trends Cell Biol 24:616-8
Domchek, Susan M; Tang, Jiangbo; Stopfer, Jill et al. (2013) Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. Cancer Discov 3:399-405
Tang, Jiangbo; Cho, Nam Woo; Cui, Gaofeng et al. (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20:317-25
Zheng, Hui; Gupta, Vibhor; Patterson-Fortin, Jeffrey et al. (2013) A BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. Cell Rep 5:180-93
Hendzel, Michael J; Greenberg, Roger A (2013) Conversations between chromatin modifications and DNA double strand break repair: a commentary. Mutat Res 750:1-4
Shanbhag, Niraj M; Greenberg, Roger A (2013) The dynamics of DNA damage repair and transcription. Methods Mol Biol 1042:227-35
Solyom, Szilvia; Aressy, Bernadette; Pylkas, Katri et al. (2012) Breast cancer-associated Abraxas mutation disrupts nuclear localization and DNA damage response functions. Sci Transl Med 4:122ra23
Greenberg, Roger A (2011) Histone tails: Directing the chromatin response to DNA damage. FEBS Lett 585:2883-90

Showing the most recent 10 out of 14 publications