The discovery and development of new treatment agents for cancer that demonstrate enhanced selectivity for the tumor microenvironment continues to be an important and challenging goal in today's world. Vascular disrupting agents (VDAs) are compounds that are effective at selectively damaging the tumor vasculature while leaving the blood supply to healthy cells intact. These compounds effectively disrupt blood flow to tumors thus starving them of necessary nutrients and oxygen. This has the potential to ultimately lead to tumor death. While a number of VDAs are in human clinical trials, none have reached approval by the Food and Drug Administration (FDA), to date. Certain of these compounds function by inhibiting the assembly of tubulin into microtubules, thus causing morphology changes to the endothelial cells lining the tumor vasculature. This triggers a cascade of cell signaling events that results in catastrophic damage to the vessels feeding the tumor. The research presented in this proposal focuses on a highly collaborative, multidisciplinary approach to the synthesis and rapid biological evaluation of promising new VDAs. A combination of synthetic/medicinal chemistry to prepare newly designed compounds coupled with rapid biochemical and biological evaluation, including tumor imaging (BLI and MRI), will provide a strong platform for the discovery of new and improved VDAs. Importantly, this type of research may ultimately translate to the clinic providing additional chemotherapeutic agents that have enhanced selectivity towards the tumor microenvironment.

Public Health Relevance

The discovery and development of new vascular disrupting agents (VDAs) is universally relevant to public health since compounds of this type have the potential to be significantly improved treatment agents for a variety of malignant tumor types. In addition to molecular design, chemical synthesis, and biochemical and biological assays (in vitro), the effective development of vascular disrupting agents for cancer therapy also requires in vivo assessment. Therefore, bioluminescence imaging (BLI) and magnetic resonance imaging (MRI) will be used in this project to evaluate new VDAs.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01CA140674-05
Application #
8627137
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Misra, Raj N
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Waco
State
TX
Country
United States
Zip Code
76798
Devkota, Laxman; Lin, Chen-Ming; Strecker, Tracy E et al. (2016) Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Bioorg Med Chem 24:938-56
Strecker, Tracy E; Odutola, Samuel O; Lopez, Ramona et al. (2015) The vascular disrupting activity of OXi8006 in endothelial cells and its phosphate prodrug OXi8007 in breast tumor xenografts. Cancer Lett 369:229-41
Herdman, Christine A; Devkota, Laxman; Lin, Chen-Ming et al. (2015) Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg Med Chem 23:7497-520
Zhou, Heling; Hallac, Rami R; Lopez, Ramona et al. (2015) Evaluation of tumor ischemia in response to an indole-based vascular disrupting agent using BLI and (19)F MRI. Am J Nucl Med Mol Imaging 5:143-53
Liu, Li; Mason, Ralph P; Gimi, Barjor (2015) Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Cancer Lett 356:462-9
MacDonough, Matthew T; Shi, Zhe; Pinney, Kevin G (2015) Mechanistic Considerations in the Synthesis of 2-Aryl-Indole Analogues under Bischler-Mohlau Conditions. Tetrahedron Lett 56:3624-3629
Liu, Li; Su, Xing; Mason, Ralph P (2014) Dynamic contrast enhanced fluorescent molecular imaging of vascular disruption induced by combretastatin-A4P in tumor xenografts. J Biomed Nanotechnol 10:1545-51
Tanpure, Rajendra P; George, Clinton S; Strecker, Tracy E et al. (2013) Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents. Bioorg Med Chem 21:8019-32
Macdonough, Matthew T; Strecker, Tracy E; Hamel, Ernest et al. (2013) Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(3'-hydroxy-4'-methoxyphenyl)-3-(3ýýý,4ýýý,5ýýý-trimethoxybenzoyl)-6-methoxyindole (OXi8006). Bioorg Med Chem 21:6831-43
Hadimani, Mallinath B; Macdonough, Matthew T; Ghatak, Anjan et al. (2013) Synthesis of a 2-aryl-3-aroyl indole salt (OXi8007) resembling combretastatin A-4 with application as a vascular disrupting agent. J Nat Prod 76:1668-78

Showing the most recent 10 out of 13 publications