Locally advanced bladder cancer develops into lethal metastatic disease, commonly to the lung, in half of all patients. Using both clinical and laboratory methodologies, we identified a new molecular pathway that regulates metastatic lung colonization (growth of micrometastases into clinical disease), components of which are altered in human disease. This pathway involves RhoGDI2 (ARHGDIB, Ly-GDI), c-Src, Rac1, endothelin-1 and versican. Microarray profiling of lineage related human bladder cancer cell lines of differing lung metastatic ability coupled with analysis of human bladder cancers at different stages identified RhoGDI2 as a candidate inhibitor of metastatic colonization. We subsequently found decreased protein expression of RhoGDI2 is an independent predictor of metastasis development in patients with bladder cancer. We also found that c-Src regulates this pathway in part by phosphorylating RhoGDI2, which increases its potency as a suppressor of lung colonization. Consistent with these data, c-Src expression decreases as a function of bladder tumor stage, and this decrease appears mutually exclusive with reduced RhoGDI2 expression. RhoGDI2, like other RhoGDIs, binds and inhibits Rho family GTPases. Investigation of these proteins yielded the surprising result that inhibition of metastases by RhoGDI2 correlated with activation of Rac1. In concurrent work, aimed at finding effectors of this pathway, gene array studies led us to identify endothelin-1 and versican as mRNAs downregulated by RhoGDI2 and upregulated in high stage human bladder cancer. Both are known macrophage chemoattractants and depletion of either protein reduced macrophage migration toward metastatic bladder cancer cells. RhoGDI2 re-expression in bladder cancer cells was also associated with decreased macrophage infiltration of lung metastases in mice. Since tumor associated macrophages (TAMs) have been found to promote metastatic colonization in many types of cancer, recruitment of macrophages by endothelin-1 and versican may mediate enhancement of metastatic growth in cells with decreased RhoGDI2. Hence, our Guiding Hypothesis is that active RhoGDI2 inhibits metastatic colonization by downregulating endothelin-1 and versican expression, which reduces tumor associated macrophage recruitment to the metastatic site.
Specific Aims are proposed to test this hypothesis, develop novel prognostic tools for advanced bladder cancer and identify new targets for therapy in patients.
Aim 1 : Evaluate the role of RhoGDI2 as a regulator and predictor of metastasis.
Aim 2 : Elucidate the mechanism by which RhoGDI2 activates Rac1 to inhibit metastasis;
Aim 3 : Evaluate effectors of metastasis suppression by RhoGDI2. Completion of these aims will contribute clinically useful knowledge as well as providing mechanistic insights into a novel pathway that suppresses bladder cancer metastasis. Doing so will also provide a new paradigm of how metastasis suppressor proteins can function by affecting innate immunity and facilitate translational approaches aimed at development of rational therapies for patients with bladder cancer.

Public Health Relevance

Bladder cancer kills 13,000 Americans each year and is associated with a cost per patient from diagnosis to death of ~$150K, the greatest of any cancer but, unfortunately, disproportionately few research resources are targeted to this disease. For most of these patients, the cause of death is attributable to metastatic spread, commonly to the lungs. The goal of this project is to understand the mechanisms that underlie lung metastasis in human bladder cancer and use this knowledge to predict and treat this lethal condition in patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA143971-05
Application #
8697021
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Woodhouse, Elizabeth
Project Start
2010-09-24
Project End
2015-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Surgery
Type
Schools of Medicine
DUNS #
City
Aurora
State
CO
Country
United States
Zip Code
80045
Duex, Jason E; Swain, Kalin E; Dancik, Garrett M et al. (2018) Functional Impact of Chromatin Remodeling Gene Mutations and Predictive Signature for Therapeutic Response in Bladder Cancer. Mol Cancer Res 16:69-77
Duex, Jason E; Owens, Charles; Chauca-Diaz, Ana et al. (2017) Nuclear CD24 Drives Tumor Growth and Is Predictive of Poor Patient Prognosis. Cancer Res 77:4858-4867
Nickerson, M L; Witte, N; Im, K M et al. (2017) Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response. Oncogene 36:35-46
Ngo, Anh T P; Thierheimer, Marisa L D; Babur, Özgün et al. (2017) Assessment of roles for the Rho-specific guanine nucleotide dissociation inhibitor Ly-GDI in platelet function: a spatial systems approach. Am J Physiol Cell Physiol 312:C527-C536
Guin, Sunny; Ru, Yuanbin; Agarwal, Neeraj et al. (2016) Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis. Clin Cancer Res 22:1274-83
Sottnik, Joseph L; Theodorescu, Dan (2016) CD44: A metastasis driver and therapeutic target. Oncoscience 3:320-321
Ahmed, Mansoor; Sottnik, Joseph L; Dancik, Garrett M et al. (2016) An Osteopontin/CD44 Axis in RhoGDI2-Mediated Metastasis Suppression. Cancer Cell 30:432-443
Oldenburg, Darby; Ru, Yuanbin; Weinhaus, Benjamin et al. (2016) CD44 and RHAMM are essential for rapid growth of bladder cancer driven by loss of Glycogen Debranching Enzyme (AGL). BMC Cancer 16:713
Venkatasubramanian, Sambasivan; Dhiman, Rohan; Paidipally, Padmaja et al. (2015) A rho GDP dissociation inhibitor produced by apoptotic T-cells inhibits growth of Mycobacterium tuberculosis. PLoS Pathog 11:e1004617
Marie, Chelsea; Verkerke, Hans P; Theodorescu, Dan et al. (2015) A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica. Sci Rep 5:13613

Showing the most recent 10 out of 34 publications