We have identified a human colon anaerobic bacterium, enterotoxigenic Bacteroides fragilis (ETBF), as a candidate etiologic agent for colon cancer and our murine models of ETBF colonization delineate a potential procarcinogenic immune pathway that ETBF induce. Just as the understanding of peptic ulcer disease and ensuing stomach cancer was transformed by the discovery of H. pylori, we hypothesize that ETBF, by secreting the potent B. fragilis toxin (BFT), precipitate procarcinogenic mucosal immune responses, thereby promoting formation of colon cancer. Our model does not propose to alter existing mutational paradigms of colon cancer but rather proposes that ETBF colonization is an integral mechanism accounting for the accumulation of genetic mutations necessary for colon carcinogenesis. This proposal will study the relationship between colon colonization by ETBF in humans, specific colon immune responses and, ultimately, colon cancer. Defining a microbial etiology for colon cancer has key implications as colon cancer is a major public health problem being the second leading cause of cancer death in the United States in women and men. A significant correlation between any two of the studied variables - ETBF colonization, colon immune responses and colon cancer -- will substantively alter current paradigms for the pathogenesis, prevention and therapy of colon cancer.

Public Health Relevance

Colon cancer is the second leading cause of cancer death for women and men. Current approaches to prevention of colon cancer are cumbersome and underutilized due to their expense and inconvenience. This project proposes that colon cancer is triggered by a common stool bacterium called enterotoxigenic Bacteroides fragilis (ETBF) and will test whether detection of ETBF and/or the colon immune response to ETBF provide new, easier approaches to the prevention of the morbidity and mortality due to colon cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Starks, Vaurice
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Dejea, Christine M; Sears, Cynthia L (2016) Do biofilms confer a pro-carcinogenic state? Gut Microbes 7:54-7
Fu, Kai; Sun, Xin; Wier, Eric M et al. (2016) Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-?B activation. Elife 5:
Housseau, Franck; Wu, Shaoguang; Wick, Elizabeth C et al. (2016) Redundant Innate and Adaptive Sources of IL17 Production Drive Colon Tumorigenesis. Cancer Res 76:2115-24
Llosa, Nicolas J; Cruise, Michael; Tam, Ada et al. (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43-51
Boleij, Annemarie; Hechenbleikner, Elizabeth M; Goodwin, Andrew C et al. (2015) The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 60:208-15
Chen, L A; Van Meerbeke, S; Albesiano, E et al. (2015) Fecal detection of enterotoxigenic Bacteroides fragilis. Eur J Clin Microbiol Infect Dis 34:1871-7
Tuddenham, Susan; Sears, Cynthia L (2015) The intestinal microbiome and health. Curr Opin Infect Dis 28:464-70
Johnson, Caroline H; Dejea, Christine M; Edler, David et al. (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891-7
Sears, Cynthia L; Geis, Abby L; Housseau, Franck (2014) Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 124:4166-72
Dejea, Christine M; Wick, Elizabeth C; Hechenbleikner, Elizabeth M et al. (2014) Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 111:18321-6

Showing the most recent 10 out of 16 publications