A subset of tumor cells have the unique ability to self-renew and are responsible for relapse. Uncovering the cell types and mechanisms that govern self-renewal will be imperative for designing new therapies in the treatment of cancer. The focus of this application is to uncover the mechanisms involved in cancer cell self-renewal in embryonal rhabdomyosarcoma (ERMS) - a devastating pediatric cancer of muscle. Having developed a robust model of zebrafish ERMS that accurately recapitulates the molecular underpinnings of this disease and identified the myf5-expressing cancer-initiating cell, experiments outlined here will uncover the basic biology of self-renewal and determine if MYF5 is required for tumor growth and self-renewal. We hypothesize that ERMS results from acquisition of self- renewal potential that is associated with the MYF5 gene program. The goal of aim 1 will be to visualize self-renewal in embryonal rhabdomyosarcoma. Using confocal imaging and transgenic reporter lines that express fluorescent proteins in various stages of muscle development, we now have unprecedented and unfettered access to visualize tumor-initiating cells in their endogenous niche. Such experiments have never been described in any model of cancer. Experiments outlined in aim 1 will determine if self-renewal is confined to specific tumor niches associated with tumor growth, the extent to which asymmetric and symmetric cell division occurs in self-renewing cancer cells at various stables of tumorigenesis, and if ERMS cells can de-differentiate from more mature cell populations into self-renewing myf5+ tumor-initiating cells. These experiments capitalize on the unique attributes of the zebrafish model system to directly visualize cancer processes in vivo by time- lapse confocal and 2-photon imaging.
Aim 2 will determine if MYF5 regulates self-renewal potential in both zebrafish and human ERMS. Microarray expression profiling shows that MYF5 is highly expressed in human ERMS when compared to alveolar RMS and normal muscle, suggesting that MYF5+ cells are abundant in this subtype of disease. Using the zebrafish ERMS cancer model in conjunction with human cell culture experiments, we will assess if MYF5 is required for tumor growth and self-renewal. Similarly, we will also assess if MYF5 is an oncogene and can lock cells in a self-renewing cell state that predisposes to ERMS. In total, this application provides a comprehensive plan to interrogate self-renewal in ERMS with the long-term goal of this work to identify molecular pathways associated with self- renewal and aggression, ultimately leading to the identification of drug targets for the treatment of ERMS.

Public Health Relevance

Uncovering molecular pathways associated with self-renewal will provide new drug targets for rational drug design for the treatment of cancer. Our application centers on determining the basic tenets of self-renewal in embryonal rhabdomyosarcoma and the role that MYF5 elicits in controlling this process.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA154923-02
Application #
8230502
Study Section
Cancer Molecular Pathobiology Study Section (CAMP)
Program Officer
Mietz, Judy
Project Start
2011-03-01
Project End
2016-02-29
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
2
Fiscal Year
2012
Total Cost
$357,689
Indirect Cost
$150,189
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Blackburn, Jessica S; Langenau, David M (2014) Zebrafish as a model to assess cancer heterogeneity, progression and relapse. Dis Model Mech 7:755-62
Chen, Eleanor Y; DeRan, Michael T; Ignatius, Myron S et al. (2014) Glycogen synthase kinase 3 inhibitors induce the canonical WNT/?-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci U S A 111:5349-54
Abraham, Jinu; Nuñez-Álvarez, Yaiza; Hettmer, Simone et al. (2014) Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev 28:1578-91
Tang, Qin; Abdelfattah, Nouran S; Blackburn, Jessica S et al. (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11:821-4
Chen, Eleanor Y; Dobrinski, Kimberly P; Brown, Kim H et al. (2013) Cross-species array comparative genomic hybridization identifies novel oncogenic events in zebrafish and human embryonal rhabdomyosarcoma. PLoS Genet 9:e1003727
Le, Xiuning; Pugach, Emily K; Hettmer, Simone et al. (2013) A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development. Development 140:2354-64
Hettmer, Simone; Liu, Jianing; Miller, Christine M et al. (2011) Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells. Proc Natl Acad Sci U S A 108:20002-7