In contrast to highly sensitive genomic and proteomic methods that primarily evaluate the state of cancer specimens, functional analyses of primary patient samples to assess their biological responses to various experimental conditions are difficult because of the often limited number of live primary cells that can be obtained from patient biopsy samples. Thus, overcoming this technical barrier has the potential to transform our ability to significantly increase translational cancer research approaches. By combining expertise in, cancer cell signaling, bioengineering, and primary patient care, the Miyamoto-Beebe-Callander team proposes to improve our ability to functionally analyze NF-kB signal transduction responses in primary patient multiple myeloma (MM) samples. Specifically, we propose to develop innovative microchannel culture devices and implement functional studies to investigate a dogma-challenging NF-kB-survival pathway in MM. We have already developed prototype culture devices that increase our ability to analyze primary MM cells. These microculture systems also provide the flexibility to study components of the tumor microenvironment, such as tumor-supporting bone marrow stromal cells (BMSCs).
Under Aim 1 we will dissect drug resistance-inducing NF-kB signaling mechanisms in primary MM cells using the first generation microscale cell culture chambers (MCCCs). We also aim to reveal patient individualized information by co- culturing MM cells and BMSCs derived from the same patients, a paradigm shift from the conventional experimental setup where patient sources of MM and BMSCs are randomly mixed.
Under Aim 2 we will further improve functional micro-scale assays with additional functionalities and with even smaller cell numbers per condition, thus greatly expanding the scope of translational research in MM. The micro-culture technology proposed has the potential to rapidly change the methods used for investigating signal transduction studies, including NF-kB, in MM and other blood and possibly solid cancer types.

Public Health Relevance

Many anticancer agents are used to kill cancer cells, but unfortunately cancer cells turn on survival mechanisms to counter the death effect. One of these mechanisms is the activation of the transcription factor NF-kB that rapidly turns on synthesis of survival genes. The proposed research will reveal an important mechanism of NF-kB pathway in patient multiple myeloma cells by developing innovative microculture methods that enable the systematic and high throughput analysis of precious patient cancer samples. This study is expected to uncover an important survival mechanism that may serve as a future drug target to improve treatment of this currently incurable cancer type.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Molecular Pathobiology Study Section (CAMP)
Program Officer
Howcroft, Thomas K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Guckenberger, David J; Berthier, Erwin; Young, Edmond W K et al. (2014) Fluorescence-based assessment of plasma-induced hydrophilicity in microfluidic devices via Nile Red adsorption and depletion. Anal Chem 86:7258-63
Young, Edmond W K; Berthier, Erwin; Beebe, David J (2013) Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices. Anal Chem 85:44-9
Pak, Chorom; Miyamoto, Shigeki (2013) A new alpha in line between KRAS and NF-*B activation? Cancer Discov 3:613-5