(Irinotecan) is a widely used chemotherapeutic prodrug that exhibits curtailed clinical utility due to its intense dose-limiting side-effect, diarhea. Several approaches have failed to adequately reduce this toxicity. The pharmacology of CPT-11-induced diarrhea implicates the in situ production of the active metabolite, SN- 38, from inactive SN-38-glucuronde by microbial ?-glucuronidase residing within the gut lumen. We recently elucidated the crystal structure of E. coli ?-glucuronidase and discovered several high potency inhibitors effective in living bacterial strains. Subsequent studies in mice showed that one such inhibitor, Inh1, protected mice from CPT-11 induced toxicity (Wallace et al., Science 2010, in press). The central hypothesis for this proposal is that CPT-11 anti-tumor activity can be improved using novel gastrointestinal (GI) bacteria-targeted lead compounds. This hypothesis has been formulated on the rationale that reduced GI toxicity will result in the ability to administer escalated doses of CPT-11, thereby improving exposure and anti-tumor activity. The long- term objectives stemming from this discovery are to understand the roles microbial ?-glucuronidases play in xenobiotic and endobiotic metabolism, toxicity and carcinogenesis.
The aims of this proposal are to complete the essential preclinical in vivo pharmacology and efficacy studies of the promising lead compound, Inh1, as it relates to CPT-11 (Aims 2 &3). In addition, other novel bacterial ?-glucuronidase inhibitors will be examined and characterized in in vitro, cell- and mouse-based studies (Aim 1). The methodologies used to complete these aims include an understanding of the pharmacokinetics and pharmacodynamics of Inh1 as its relates to CPT-11 metabolism in rodents. Novel heterotransplanted human colon tumors in mice will be used to determine the effect of Inh1 on CPT-11 dose-intensification and anti-tumor activity. Finally, novel uncharacterized ?-glucuronidase inhibitors we have already discovered will be evaluated in vitro and in vivo. New compound synthesis may be necessary to optimize delivery while preserving potency.
These aims and goals are in keeping with the mission of NCI, which is focused on mechanistic approaches towards improving cancer therapies. Our objective is to improve CPT-11 efficacy by alleviating its dose-limiting side effect.

Public Health Relevance

The dose-limiting side effect of the widely used anticancer drug CPT-11 (Irinotecan) is acute diarrhea caused by the reactivation of a drug metabolite in the GI. We have eliminated this toxicity in mice by inhibiting a specific enzyme in bacterial GI symbiotes. Here we outline the necessary preclinical studies to develop our lead compounds into novel drugs to improve the efficacy and systemic tolerance of this proven chemotherapeutic agent. PHS 398/2590 (Rev. 11/07) Page Continuation Format Page

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA161879-01A1
Application #
8296769
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Alley, Michael C
Project Start
2012-04-01
Project End
2017-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
1
Fiscal Year
2012
Total Cost
$315,319
Indirect Cost
$67,979
Name
Albert Einstein College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Venkatesh, Madhukumar; Mukherjee, Subhajit; Wang, Hongwei et al. (2014) Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41:296-310
Zhang, Jingjing; Dou, Wei; Zhang, Eryun et al. (2014) Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol Gastrointest Liver Physiol 306:G27-36
Mani, Sridhar; Boelsterli, Urs A; Redinbo, Matthew R (2014) Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol 54:559-80
Roberts, Adam B; Wallace, Bret D; Venkatesh, Madhu Kumar et al. (2013) Molecular insights into microbial *-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol Pharmacol 84:208-17
Mukherjee, Paromita; Mani, Sridhar (2013) Methodologies to decipher the cell secretome. Biochim Biophys Acta 1834:2226-32