The primary goal of this transformative and translational research project is to develop revolutionary nanoparticle contrast agents and spectroscopic instrumentation in the near infrared for intraoperative cancer detection and image-guided surgery. The proposed technologies are broadly applicable to many types of solid tumors, but concerted efforts will be directed toward lung cancer, one of the most aggressive human malignancies and a worldwide health problem for both men and women. The overall rationale is that surgery cures approximately half of all cancer patients, while chemotherapy and radiation therapy cure only 5%. The single most important predictor of patient survival for almost all cancers is a complete surgical resection of the primary tumor, draining lymph nodes, and metastatic lesions. At the present, however, over 40% of patients that undergo surgery leave the operating room without a complete resection due to missed lesions. Thus there are urgent unmet needs and major opportunities to develop new and innovative technologies that can help the surgeon to delineate tumor margins, to identify micrometastases and draining lymph nodes, and to determine if the tumor has been completely removed. To accomplish this goal for lung cancer, we have assembled a collaborative team of 8 senior faculty investigators at three academic institutions (Emory University, Georgia Tech, and the University of Pennsylvania) with synergistic expertise in nanotechnology, instrumentation, software engineering, radiology, pathology, lung/thoracic surgery, and medical oncology. The proposed work will optimize two distinct types of near-infrared contrast agents and will further translate a handheld spectroscopic device and a wide-field multichannel imaging system for first-in-human applications. The first type of contrast agents is based on an FDA-approved dye (indocyanine green or ICG) and its albumin complexes, and will be used for device optimization and accelerated clinical feasibility studies. The second type of contrast agents is based on pegylated colloidal gold and surface-enhanced Raman scattering (SERS), a class of plasmonic nanocrystals that are able to enhance the Raman scattering efficiencies by 14-15 orders of magnitude, allowing spectroscopic detection and identification of single molecules and single nanoparticles at room temperature. For both types of contrast agents, we will use large animals (canines) with naturally occurring lung tumors (most relevant to the human disease) for tumor margin delineation as well as for image- guided resection of satellite lesions, micrometastases, and metastatic lymph nodes. In addition, we will conduct a Phase I/II clinical trial and examine if there is a benefit to standard-of-care approaches by enrolling approximately 30 human patients with non-small cell lung carcinoma (NSCLC).

Public Health Relevance

This grant application develops new and innovative technologies for applications in cancer surgery. The main goal is to help the surgeon to delineate tumor margins, to identify diseased lymph nodes and micrometastases, and to determine if the tumor has been completely removed. The combined use of innovative contrast agents and spectroscopic instrumentation is expected to make a major impact in reducing the local and regional recurrence rates of lung cancer after surgery.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01CA163256-04
Application #
8722493
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Tandon, Pushpa
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Emory University
Department
Biomedical Engineering
Type
Schools of Medicine
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Okusanya, Olugbenga T; Holt, David; Heitjan, Daniel et al. (2014) Intraoperative near-infrared imaging can identify pulmonary nodules. Ann Thorac Surg 98:1223-30
Lim, Sung Jun; Smith, Andrew; Nie, Shuming (2014) The More Exotic Shapes of Semiconductor Nanocrystals: Emerging Applications in Bioimaging. Curr Opin Chem Eng 4:137-143
Holt, David; Okusanya, Olugbenga; Judy, Ryan et al. (2014) Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLoS One 9:e103342
SEQC/MAQC-III Consortium (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32:903-14
Kothari, Sonal; Phan, John H; Stokes, Todd H et al. (2014) Removing batch effects from histopathological images for enhanced cancer diagnosis. IEEE J Biomed Health Inform 18:765-72
Smith, Andrew M; Lane, Lucas A; Nie, Shuming (2014) Mapping the spatial distribution of charge carriers in quantum-confined heterostructures. Nat Commun 5:4506
Kothari, Sonal; Phan, John H; Stokes, Todd H et al. (2013) Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 20:1099-108
Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H et al. (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto Calif) 6:143-62
Qian, Ximei; Emory, Steven R; Nie, Shuming (2012) Anchoring molecular chromophores to colloidal gold nanocrystals: surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking. J Am Chem Soc 134:2000-3