Our project focuses on characterizing the molecular mechanisms important for the acquisition of invasion in lung adenocarcinoma. Our research has focused on characterizing the molecular mechanisms important for invasion, the initial step of metastasis. Studies from our group and others indicate that clinical outcomes for patients with early stage lung adenocarcinoma are influenced by histological invasiveness. Deciphering the molecular processes underlying the acquisition of invasiveness promises to have increasing importance as we see a shift in the epidemiology of lung cancer towards early, and in some cases, not yet invasive disease. An improved understanding of the biological properties of these tumors will enhance the clinical management of early stage lung cancer, including directing the extent of resection for small lung adenocarcinoma tumors. Our dataset is enriched for early stage non-invasive adenocarcinoma (AIS, formerly called BAC) tumors that are not well represented in genomics repositories such as The Cancer Genome Atlas (TCGA). Our preliminary gene expression profiling results from tumor cells suggest that focal chromosomal copy number increase is important in mediating the acquisition of invasion in lung adenocarcinoma. This innovative discovery is the focus of this multidisciplinary, multi-institutional project to expand our genomics examination of focal somatic copy number alterations, examine the role of stromal influences on invasion, investigate the diagnostic and therapeutic implications of gene amplification, and to understand the mechanisms that repress invasion in AIS and promote invasion in adenocarcinoma. Using well characterized cohorts of lung adenocarcinoma specimens, we will use RNA and DNA microarrays, whole exome sequencing, and fluorescent in situ hybridization to test the hypothesis that genomic loci with integrated alterations of copy number and mRNA levels are important for the acquisition of invasion and metastasis capacity in lung adenocarcinoma. Upon validation in resected specimens, these loci will be brought forth for prospective clinical testing in resected tumor specimens and in fine needle aspirates acquired from early stage lung adenocarcinoma tumors. Our long term goal is to develop biomarkers that will stratify risk before or after resection of tumors that are homogenous radiographically or histologically, respectively.

Public Health Relevance

The project addresses an important unmet need in the diagnosis and treatment of early stage lung cancer. Recent experience has shown that a large number of lung adenocarcinomas may be biologically and clinically indolent, and that other small early stage tumors may be biologically and clinically aggressive. Our project proposes to identify and validate specific genomic loci that are associated with biology that is indolent or aggressive. Our long term goal is to develop biomarkers that will stratify risk before or after resection of tumors that are similar radiographically or histologically, respectively.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Clinical Oncology Study Section (CONC)
Program Officer
Kim, Kelly Y
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Lee, Eunjee; Ito, Koichi; Zhao, Yong et al. (2016) Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers. Bioinformatics 32:96-105
Zhao, Yongzhong; Forst, Christian V; Sayegh, Camil E et al. (2016) Molecular and genetic inflammation networks in major human diseases. Mol Biosyst 12:2318-41
Zhang, Bin; Tran, Linh; Emilsson, Valur et al. (2016) Characterization of Genetic Networks Associated with Alzheimer's Disease. Methods Mol Biol 1303:459-77
GTEx Consortium (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648-60
Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick et al. (2015) Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet 11:e1004898
Wiener, Renda Soylemez; Gould, Michael K; Arenberg, Douglas A et al. (2015) An official American Thoracic Society/American College of Chest Physicians policy statement: implementation of low-dose computed tomography lung cancer screening programs in clinical practice. Am J Respir Crit Care Med 192:881-91
Mazzone, Peter; Powell, Charles A; Arenberg, Douglas et al. (2015) Components necessary for high-quality lung cancer screening: American College of Chest Physicians and American Thoracic Society Policy Statement. Chest 147:295-303
Slatore, Christopher G; Horeweg, Nanda; Jett, James R et al. (2015) An Official American Thoracic Society Research Statement: A Research Framework for Pulmonary Nodule Evaluation and Management. Am J Respir Crit Care Med 192:500-14
Veluswamy, Rajwanth R; Ezer, Nicole; Mhango, Grace et al. (2015) Limited Resection Versus Lobectomy for Older Patients With Early-Stage Lung Cancer: Impact of Histology. J Clin Oncol 33:3447-53
Wang, Minghui; Zhao, Yongzhong; Zhang, Bin (2015) Efficient Test and Visualization of Multi-Set Intersections. Sci Rep 5:16923

Showing the most recent 10 out of 22 publications