Protective anti-tumor immunity is impaired by immunosuppressive mechanisms. Immune checkpoint proteins, including CTLA-4, PD-1, and B7-H4, function as "effector molecules" to disable T-cell responses against cancer. Although checkpoint blockade using monoclonal antibodies (mab) have shown positive outcomes in clinical trials, the overall response rate has been disappointingly as low as 6-21%. Therefore, identifying novel checkpoint proteins is critically needed. We have discovered and functionally characterized a new Ig-superfamily inhibitory ligand, designated V-domain Immunoglobulin Suppressor of T cell Activation (VISTA). We hypothesize that VISTA functions as an additional and crucial immune-checkpoint ligand that controls anti-tumor immunity. The goal in this grant proposal is to determine the molecular and cellular mechanisms of VISTA-mediated immune suppression, both via its direct effect on T effector cell activation, and via its regulatory functon on other immunosuppressive cell types, which in turn control T effector cell responses against cancer. Accordingly, the specific Aims are: (1) Determine the molecular mechanisms whereby VISTA suppresses T-cell activation, and how it collaborates with another immune-checkpoint pathway PD-L1/PD-1 to suppress tumor-specific T-cell responses. (2) Determine the role of VISTA on the development and function of Foxp3+CD4+ Tregs. (3) Define the role of VISTA on the development, differentiation, and function of mononuclear phagocytes in the normal physiological state and during tumorigenesis. A collection of novel reagents and models including VISTA mab, VISTAKO mice, and VISTA conditional KO mice will be used for this study. In addition to a transplantable melanoma B16F10 model, we will employ a clinically relevant inducible-melanoma model for mechanistic studies and assessing VISTA-based therapeutic strategies. Impact: Any successful cancer immunotherapeutic strategy must consider the negative immune regulators that prevent the development of optimal anti-tumor immunity. As a novel immune checkpoint pathway, VISTA provides a new target for the immune intervention in cancer. This study will provide answers regarding VISTA- mediated immune regulation during tumorigenesis. It will establish a novel paradigm in which VISTA and PD- L1/PD1 synergize to control T-cell responses, thus providing a rationale for targeting VISTA either alone or in combination with other immune checkpoint pathways for cancer immunotherapy. Further, this study will establish a new paradigm regarding how tumors utilize VISTA to alter the differentiation and functions of Tregs and monocytes, thus providing novel strategies for targeting these prominent immune-suppressors in cancer immunotherapy.

Public Health Relevance

VISTA is a novel immune checkpoint protein that plays a critical and non-redundant role in tumor-induced immune suppression. VISTA blockade unleashes potent anti-tumor immunity. This study will define the molecular and cellular mechanisms of VISTA- dependent immunosuppressive pathways, and build a foundation for designing novel cancer immunotherapeutic strategies that targets VISTA.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Transplantation, Tolerance, and Tumor Immunology (TTT)
Program Officer
Howcroft, Thomas K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
Schools of Medicine
United States
Zip Code
Lines, J Louise; Sempere, Lorenzo F; Broughton, Thomas et al. (2014) VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2:510-7
Wang, Yan; Telesford, Kiel M; Ochoa-Repáraz, Javier et al. (2014) An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun 5:4432
Lines, J Louise; Pantazi, Eirini; Mak, Justin et al. (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74:1924-32
Wang, Li; Le Mercier, Isabelle; Putra, Juan et al. (2014) Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci U S A 111:14846-51
Le Mercier, Isabelle; Chen, Wenna; Lines, Janet L et al. (2014) VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res 74:1933-44