Despite the established use and optimization of polychemotherapy and the development of new agents that transiently reduce the tumor burden, relapse continues to be the most common cause of death in acute myeloid leukemia (AML). Less than one third of patients with AML achieve durable remission with current treatment regimens, and prognostication and risk stratification remain challenging. New targets need to be identified for more effective and individualized therapeutic intervention. We have recently reported that a non- clustered homeobox gene, HLX, is overexpressed in leukemic stem cells in a mouse AML model and in the vast majority (87%) of AML patients, including in sorted stem cells, and that higher HLX levels are independently associated with poor overall survival of AML patients. Functional studies showed that HLX overexpression leads to the formation of aberrant progenitors with blocked differentiation and unlimited serial clonogenicity, and that HLX knockdown has an inhibitory effect on AML cell growth in vitro and in vivo. However, the mechanism of action of HLX, its downstream pathways, and its role in leukemia initiation and maintenance are unknown. Based on our findings and preliminary data we hypothesize that HLX overexpression is an early step in AML pathogenesis and that HLX acts in concert with other common disease alleles, including FLT3-ITD and CBFB-MYH11, and through specific HLX-dependent pathways, including PAK1 and BTG1. We further hypothesize that HLX directly transcriptionally regulates target genes in AML, and that targeting HLX or functionally critical downstream pathways is a suitable, novel approach for the inhibition of AML. Our specific research aims are: 1) To study the role of HLX overexpression in the initiation of AML, including the ability of HLX overexpression to cooperate with other disease alleles;2) To investigate the effect of reducing HLX expression on AML maintenance in vivo;3) To identify functionally relevant, direct transcriptional targets of HLX in AML. We will study leukemic transformation by HLX overexpression in concert with cofactors, including FLT3ITD and CBFB-MYH11, using retroviral co-expression/transplantation assays, as well as a newly developed conditional Hlx knockin mouse model. We will study the anti-leukemic effects of HLX inhibition in primary human AML cells and a genetic mouse model of AML, and identify functionally critical pathways which mediate the leukemia-inhibitory effect of HLX downregulation. We will study whether HLX directly regulates transcription of candidate downstream genes PAK1 and BTG1. In addition, we will determine genome-wide HLX-chromatin interactions by ChIP-seq, and identify new HLX-regulated targets and test for functional relevance in AML. In summary, based on our initial discovery this study will investigate the function of HLX in AML pathogenesis, and how HLX downregulation can be utilized to inhibit leukemia. The results of this study will enhance our knowledge of disease-causing mechanisms in AML, and define HLX and its downstream pathways as novel targets for therapy in AML.

Public Health Relevance

Despite the established use chemotherapy and the development of new agents that are effective at transiently reducing the tumor burden, relapse continues to be the most common cause of death in acute myeloid leukemia (AML), and many other types of cancer. Defining the molecular characteristics of AML is essential for both, understanding the initiation and maintenance of leukemia and for developing novel strategies to achieve a lasting cure of this disease. In this project, we will study a new gene-activating molecule (a so-called transcription factor), which we have recently discovered to play an important role in AML. We will investigate how increased levels of this molecule contribute to leukemia formation, and how reducing its levels can be utilized to inhibit leukemia cell growth and to develop novel targeted therapies for the treatment of leukemia.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Molecular Pathobiology Study Section (CAMP)
Program Officer
Mufson, R Allan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Stanley, Robert F; Steidl, Ulrich (2016) Molecular Mechanism of Mutant CALR-Mediated Transformation. Cancer Discov 6:344-6
Will, Britta; Vogler, Thomas O; Narayanagari, Swathi et al. (2015) Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med 21:1172-81
Okoye-Okafor, Ujunwa C; Bartholdy, Boris; Cartier, Jessy et al. (2015) New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol 11:878-86
Schinke, Carolina; Giricz, Orsolya; Li, Weijuan et al. (2015) IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood 125:3144-52
Shih, Alan H; Jiang, Yanwen; Meydan, Cem et al. (2015) Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell 27:502-15
Pandolfi, Ashley; Stanley, Robert F; Yu, Yiting et al. (2015) PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood 126:1118-27
Bartholdy, Boris; Christopeit, Maximilian; Will, Britta et al. (2014) HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia. J Clin Invest 124:1158-67
Antony-Debré, Iléana; Steidl, Ulrich (2014) CDK6, a new target in MLL-driven leukemia. Blood 124:5-6
Guzman, Monica L; Yang, Neng; Sharma, Krishan K et al. (2014) Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia. Mol Cancer Ther 13:1979-90
Bhattacharyya, Sanchari; Yu, Yiting; Suzuki, Masako et al. (2013) Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer. Nucleic Acids Res 41:e157

Showing the most recent 10 out of 11 publications