Despite the promise, and hope, that molecular therapies could bring durable remissions to cancer patients, most """"""""targeted"""""""" drugs did not live up to this expectation, providing only limited, and, in most cases, short-lived benefit due to the emergence of metastatic disease. Although much effort has focused on mechanisms of drug resistance, the possibility that molecular therapies may actually reprogram tumors, and select new cancer phenotypes important for disease progression, or tumor plasticity, has not been widely considered. We tested this concept by examining the response of tumors to targeted inhibition of the phosphatidylinositol-3 kinase (PI3K) network, a disease driver in virtually every human cancer and important therapeutic target. Our preliminary data show that small molecule inhibitors of PI3K induce a global transcriptional and metabolic reprogramming in tumors. This adaptive response imparts a new cancer phenotype that combines paradoxical traits of protracted proliferative and bioenergetics quiescence, appearance of senescence, heightened cell survival and increased tumor cell invasion. These are pivotal hallmarks of dormancy, an elusive process in which tumor cells disseminate early from a primary lesion, resist apoptosis, seed metastatic sites, and remain quiescent for long periods of time only to re-awaken as recurrent (and incurable) disease. Mechanistically, tumor plasticity induced by PI3K inhibition involves reactivation of Akt in cytosol and mitochondria, and Akt- dependent phosphorylation of cyclophilin D (CypD), a multifunctional regulator of mitochondrial bioenergetics and apoptosis. Conversely, when combined with a small molecule antagonist of mitochondrial integrity, Gamitrinib, PI3K inhibitors no longer trigger adaptive tumor reprogramming, suppress invasion and exert considerably enhanced anticancer activity. Therefore, the hypothesis that tumor dormancy can be induced as an adaptive response to molecular therapy and coordinated by mitochondrial reprogramming can be formulated, and will constitute the focus of the present application. Experiments in the first specific aim will recapitulate the phenotype of PI3K inhibitin in established dormancy models, and dissect the mechanistic requirements of this pathway with respect to cell cycle quiescence, senescence, and kinase cascade(s) of cell invasion. In the second specific aim, we will define the mechanism(s) of Akt reactivation in dormancy, characterize a CypD-Akt complex in mitochondria, and dissect the role of Akt phosphorylation of CypD in repurposing of mitochondrial functions in apoptosis, bioenergetics, and autophagy. The third specific aim will examine the rational combination of PI3K inhibitors plus an antagonist of mitochondrial quality control, Gamitrinib, in tumor cell killing, reversal of the adaptive phenotyp, and preclinical activity in models of angiogenesis, metastasis, and tumor dormancy, in vivo. Overall, the experimental plan will characterize a new mechanism of tumor dormancy as an adaptive response to molecular therapy. The results will credential novel therapeutic strategies to obliterate dormancy and eradicate metastatic competency of tumors.

Public Health Relevance

Metastasis, or the dissemination of tumor cells to distant organs, is the primary cause of morbidity and mortality in cancer patients, but therapeutic strategies to limit this process do not currently exist. In some cases, metastatic foci manage to remain dormant for long periods of time after initial treatment, only to reawaken as relapsed and incurable disease. Our findings that dormancy traits can be acquired as part of an adaptive response to molecular therapies, and through reprogramming of mitochondrial functions, now opens concrete prospects for the introduction of novel anti-metastatic therapies in humans.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Mohla, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Seo, Jae Ho; Rivadeneira, Dayana B; Caino, M Cecilia et al. (2016) The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis. PLoS Biol 14:e1002507
Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas et al. (2016) CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity 44:303-15
Caino, M Cecilia; Altieri, Dario C (2016) Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin Cancer Res 22:540-5
Lisanti, Sofia; Garlick, David S; Bryant, Kelly G et al. (2016) Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates Prostate Cancer Development. J Biol Chem 291:25247-25254
Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia et al. (2016) Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell 30:257-72
Zhang, Gao; Frederick, Dennie T; Wu, Lawrence et al. (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126:1834-56
Caino, M Cecilia; Altieri, Dario C (2015) Cancer cells exploit adaptive mitochondrial dynamics to increase tumor cell invasion. Cell Cycle 14:3242-7
Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica et al. (2015) Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression. PLoS One 10:e0130060
Rivadeneira, Dayana B; Caino, M Cecilia; Seo, Jae Ho et al. (2015) Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 8:ra80
Trerotola, Marco; Ganguly, Kirat K; Fazli, Ladan et al. (2015) Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget 6:14318-28

Showing the most recent 10 out of 15 publications