Cocaine addiction is characterized by excessive demand for drug and high propensity to relapse to drug seeking after quitting. Although many people experiment with drugs, individuals differ substantially in the degree to which addiction-related behaviors occur after drug exposure. Extensive research over the last 10 years has shown that the hypothalamic orexin neuropeptide system contributes importantly to reward processing, including cocaine demand and seeking. However, the role of orexins in either individual differences in cocaine demand and seeking ('trait'factors associated with increased risk of cocaine abuse), or in the excessive demand and seeking that occurs after extensive drug exposure ('state'factors associated with cocaine addiction), is unknown. Here, we will use a novel behavioral economics approach, combined with antisense knockdown, optogenetics, pharmacology and Fos staining, to measure the role of orexin signaling as a 'trait'factor that contributes to individual differences in cocaine demand and seeking. We will use similar methods in a model of cocaine addiction (long-access cocaine self-administration) to determine the role of orexin in 'state'factors that lead to addiction. In addition, we will examine trait-stte interactions, and determine what role orexin plays in the propensity for some individuals to readily transition to excessive drug seeking after extensive cocaine self-administration. Our preliminary studies indicate that high cocaine demand is a reliable predictor of high propensity to relapse to cocaine seeking;we will determine the role of orexin in this relationship. We will also determine which subpopulations of orexin neurons mediate cocaine demand and relapse in non-addicted subjects, as well as in the long access model of cocaine addiction. These studies will delineate the role of orexins in motivational differences that occur naturally within a population, and that may put certain individuals at risk for drug abuse. They will also provide the first test of orexin's role in the excessive demand and drug seeking in addiction, produced by prolonged experience with cocaine. We predict that spontaneous individual variability in cocaine demand and seeking involves the level of engagement of specific orexin neuronal subpopulations, and that the excessive demand and inflexible seeking characteristic of addiction corresponds to excessive orexin signaling. We also will examine the possibility that this excessive signaling in addiction may involve interactions between subpopulations of reward-related and stress-related orexin neurons. This research also has translational potential for individualized treatment: Addicts that exhibit high demand for cocaine may particularly benefit from treatments to attenuate signaling in an overly active orexin system.

Public Health Relevance

Cocaine addiction is a chronic condition that remains clinically difficult to treat. The proposed studies will reveal the role of a key brain neuropeptid system in individual differences in propensity for cocaine abuse, and in the excessive demand and relapse propensity that characterizes cocaine addiction. These findings will increase our knowledge of brain mechanisms involved in addiction, and include a test to identify addicts that may particularly benefit from orexin-based therapy.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Volman, Susan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
Schools of Medicine
United States
Zip Code
Bentzley, Brandon S; Aston-Jones, Gary (2016) Inhibiting subthalamic nucleus decreases cocaine demand and relapse: therapeutic potential. Addict Biol :
Augur, Isabel F; Wyckoff, Andrew R; Aston-Jones, Gary et al. (2016) Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking. J Neurosci 36:10174-80
McGlinchey, Ellen M; James, Morgan H; Mahler, Stephen V et al. (2016) Prelimbic to Accumbens Core Pathway Is Recruited in a Dopamine-Dependent Manner to Drive Cued Reinstatement of Cocaine Seeking. J Neurosci 36:8700-11
Aston-Jones, G; Waterhouse, B (2016) Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Res 1645:75-8
Cox, Brittney M; Cope, Zackary A; Parsegian, Aram et al. (2016) Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology (Berl) 233:2319-27
James, Morgan H; Aston-Jones, Gary (2016) The Ventral Pallidum: Proposed Integrator of Positive and Negative Factors in Cocaine Abuse. Neuron 92:5-8
Lopez, Marcelo F; Moorman, David E; Aston-Jones, Gary et al. (2016) The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 1636:74-80
Moorman, David E; James, Morgan H; Kilroy, Elisabeth A et al. (2016) Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 43:710-20
Moorman, David E; James, Morgan H; McGlinchey, Ellen M et al. (2015) Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628:130-46
Bentzley, Brandon S; Aston-Jones, Gary (2015) Orexin-1 receptor signaling increases motivation for cocaine-associated cues. Eur J Neurosci 41:1149-56

Showing the most recent 10 out of 68 publications