This is a renewal grant application for grant DA011946 in response to Program Announcement PA-02-085 (Neuroscience Research on Drug Addiction). Tobacco smoking, attributed at least partly to the addictive properties of nicotine, is a worldwide health problem that contributes to significant medical costs, deaths and human suffering. Research investigating the mechanisms of nicotine dependence will provide insights into the development of novel behavioral and pharmacological approaches to treat nicotine dependence and habitual tobacco smoking. During the previous funding period, the critical involvement of the glutamate system in both the reinforcing effects of nicotine and the development of nicotine dependence was shown. These data suggested that: a) decreasing glutamate transmission at postsynaptic metabotropic (mGluR) and ionotropic (iGluR) glutamate receptors decreases the reinforcing effects of nicotine;and b) during the development of nicotine dependence there are adaptations in glutamate system function, involving changes in the activity of pre- and post-synaptic glutamate receptors, to counteract the stimulatory effects of nicotine on glutamate transmission. The proposed work will extend these previous findings by investigating brain sites where glutamate plays a role in nicotine reinforcement and dependence.
Specific Aim 1 will explore brain sites involved in glutamatergic regulation of intravenous nicotine self-administration in rats, by administering mGluR5, NMDA or AMPA/kainate receptor antagonists into the nucleus accumbens shell, the ventral tegmental area, the central nucleus of the amygdala or the prefrontal cortex.
Specific Aim 2 will explore brain sites (same as in Aim 1) where adaptations in glutamate system function occur with the development of nicotine dependence, that affect the regulation of brain reward function in nicotine-dependent rats. Brain reward function will be assessed with the intracranial self-stimulation procedure. The focus will be on mGluR2/3 and AMPA/kainate receptors. Finally, Specific Aim 3 will study intravenous nicotine self-administration in mGluR2/3 and mGluR7 knockout mice to further explore the role of these glutamate receptors in nicotine reinforcement. This work will provide information about the role of glutamate transmission in specific brain sites in nicotine reinforcement, and reveal adaptations that occur in glutamate function in specific brain sites during nicotine dependence;these adaptations are likely to contribute to the affective aspects of nicotine withdrawal and lead to relapse. Such studies will identify novel therapeutic targets for the treatment of nicotine dependence and habitual tobacco smoking in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
3R01DA011946-11S1
Application #
8230167
Study Section
Special Emphasis Panel (ZRG1-IFCN-A (03))
Program Officer
Lynch, Minda
Project Start
2000-08-10
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
11
Fiscal Year
2011
Total Cost
$153,596
Indirect Cost
Name
University of California San Diego
Department
Psychiatry
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Der-Avakian, Andre; Barnes, Samuel A; Markou, Athina et al. (2016) Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders. Curr Top Behav Neurosci 28:231-62
Justinova, Zuzana; Le Foll, Bernard; Redhi, Godfrey H et al. (2016) Differential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on nicotine versus cocaine self-administration and relapse in squirrel monkeys. Psychopharmacology (Berl) 233:1791-800
Hall, F Scott; Der-Avakian, Andre; Gould, Thomas J et al. (2015) Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 58:168-85
Li, Xia; Markou, Athina (2015) Metabotropic Glutamate Receptor 7 (mGluR7) as a Target for the Treatment of Psychostimulant Dependence. CNS Neurol Disord Drug Targets 14:738-44
Stoker, Astrid K; Marks, Michael J; Markou, Athina (2015) Null mutation of the ?2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice. Eur J Pharmacol 753:146-50
Chan, Ming-Huan; Tsai, Yi-Ling; Lee, Mei-Yi et al. (2015) The group II metabotropic glutamate receptor agonist LY379268 reduces toluene-induced enhancement of brain-stimulation reward and behavioral disturbances. Psychopharmacology (Berl) 232:3259-68
Li, Xia; Semenova, Svetlana; D'Souza, Manoranjan S et al. (2014) Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation. Neuropharmacology 76 Pt B:554-65
Dhanya, Raveendra-Panickar; Sheffler, Douglas J; Dahl, Russell et al. (2014) Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence. J Med Chem 57:4154-72
Pergadia, Michele L; Der-Avakian, Andre; D'Souza, Manoranjan S et al. (2014) Association between nicotine withdrawal and reward responsiveness in humans and rats. JAMA Psychiatry 71:1238-1245
Kayir, Hakan; Semenova, Svetlana; Markou, Athina (2014) Baseline impulsive choice predicts the effects of nicotine and nicotine withdrawal on impulsivity in rats. Prog Neuropsychopharmacol Biol Psychiatry 48:6-13

Showing the most recent 10 out of 82 publications