Cannabinoid receptors are molecular targets for marijuana, the most widespread illegal drug of abuse in Western societies. They are densely expressed in areas of the central nervous system (CNS) that participate in the control of appetite, pain, movement and memory. Such functions are strongly affected by cannabinoid drugs, with consequences that include appetite stimulation, analgesia, euphoria, and memory impairment. Although the pharmacology of cannabinoid drugs is now fairly well understood, the endogenous signaling system by which cannabinoid receptors are normally engaged remains largely unexplored. Endogenous ligands for cannabinoid receptors, such as anandamide and 2-arachidonylglycerol (2-AG), have been described. Anandamide is produced in and released from neurons on depolarization, and undergoes a rapid process of biological inactivation consisting of transport into cells and intracellular hydrolysis. Anandamide transport is mediated by a high-affinity facilitated carrier system, the molecular structure of which remains unknown, while anandamide hydrolysis is catalyzed by the enzyme fatty acid amide hydrolase (FAAH).
The first aim of the proposed research is to investigate the mechanisms responsible for anandamide transport. Experiments conducted during the current funding period have revealed several general properties of anandamide transport. The proposed studies will extend these investigations, focusing on the role played by FAAH in driving anandamide internalization.
The second aim of our proposed research is to determine what the structural determinants are for anandamide transport. Our previous investigations have led to the discovery of novel inhibitors of anandamide transport. We will further explore the structure-activity relationship of this process by designing and synthesizing novel reverse-amide analogs of anandamide and testing them for the ability to act as selective transport inhibitors.
The third aim of our proposal is to develop potent and selective inhibitors of FAAH activity. Previous studies from our lab have identified a novel class of carbamate-based FAAH inhibitors, which are highly potent and selective. We will build on this knowledge to design and synthesize a second generation of carbamate-based FAAH inhibitors, and to investigate the molecular basis of their interaction with FAAH. These studies will set the stage for the molecular characterization of the anandamide transporter protein and for the development of agents that selective block anandamide transport or FAAH-catalyzed anandamide hydrolysis. In conclusion, by further elucidating the mechanisms of anandamide deactivation, our studies will shed new light on the mechanisms of marijuana abuse and help develop novel strategies for substance abuse and psychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA012413-07
Application #
6917933
Study Section
Molecular, Cellular and Developmental Neurosciences 2 (MDCN)
Program Officer
Schnur, Paul
Project Start
1998-08-14
Project End
2009-07-31
Budget Start
2005-08-01
Budget End
2006-07-31
Support Year
7
Fiscal Year
2005
Total Cost
$382,509
Indirect Cost
Name
University of California Irvine
Department
Pharmacology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Schoch, H; Huerta, M Y; Ruiz, C M et al. (2018) Adolescent cannabinoid exposure effects on natural reward seeking and learning in rats. Psychopharmacology (Berl) 235:121-134
Wang, W; Cox, B M; Jia, Y et al. (2018) Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Mol Psychiatry 23:1798-1806
Castellani, Beatrice; Diamanti, Eleonora; Pizzirani, Daniela et al. (2017) Synthesis and characterization of the first inhibitor of N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD). Chem Commun (Camb) 53:12814-12817
Wei, Don; Allsop, Stephen; Tye, Kay et al. (2017) Endocannabinoid Signaling in the Control of Social Behavior. Trends Neurosci 40:385-396
Khurana, Leepakshi; Mackie, Ken; Piomelli, Daniele et al. (2017) Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities. Neuropharmacology 124:3-12
Rock, Erin M; Moreno-Sanz, Guillermo; Limebeer, Cheryl L et al. (2017) Suppression of acute and anticipatory nausea by peripherally restricted fatty acid amide hydrolase inhibitor in animal models: role of PPAR? and CB1 receptors. Br J Pharmacol 174:3837-3847
Angelini, Roberto; Argueta, Donovan A; Piomelli, Daniele et al. (2017) Identification of a Widespread Palmitoylethanolamide Contamination in Standard Laboratory Glassware. Cannabis Cannabinoid Res 2:123-132
Wei, Don; Lee, DaYeon; Li, Dandan et al. (2016) A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology (Berl) 233:1911-9
Scarpelli, Rita; Sasso, Oscar; Piomelli, Daniele (2016) A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation. ChemMedChem 11:1242-51
Migliore Dr, Marco; Pontis Dr, Silvia; Fuentes de Arriba, Angel Luis et al. (2016) Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis. Angew Chem Int Ed Engl 55:11193-11197

Showing the most recent 10 out of 81 publications