The leading hypothesis in addiction research is that exposure to drugs of abuse induces adaptive neu- ronal changes, resulting in addictive behaviors. The many experiments conducted on the basis of this neuro-adaptation theory have identified a huge number of drug-induced cellular changes related to addic- tion. For clinical treatment, however, it is impossible to directly manipulate each of these changes. Our long-term research goal is, thus, to identify the molecular `controllers'that trigger and maintain drug-induced neural adaptations;manipulations of these key molecules may then collectively correct other subordinate pathophysiological cellular changes. This proposal focuses on the N-methyl-D-aspartate receptor (NMDAR), a key molecule that governs multiple forms of neural plasticity and that is a potential molecular controller of addiction-related neural adaptations. Our preliminary studies show that cocaine exposure persistently alters the function of NMDARs in nucleus accumbens (NAc) neurons;experimentally mimicking this change of NMDARs triggers secondary cellular adaptations related to addiction. We hypothesize that this cocaine- induced NMDAR adaptation steers a collection of NMDAR-dependent cellular processes toward addiction- specific adaptations. In this application, we propose an extensive but realistic set of experiments to (1) further characterize cocaine-induced adaptation in NAc NMDARs, (2) examine the underlying molecular mechanisms, and (3) investigate the cellular consequences. To achieve these goals we will use a multi- disciplinary approach utilizing patch-clamp recordings, viral-mediated gene transfer, biochemical assays, and behavioral tests. Relevance to Public Health: By characterizing this novel NMDAR adaptation, our proposed study will define a potential molecular trigger for persistent cocaine-induced adaptations, thus providing relevant mechanistic insights to underpin advances in prevention and treatment of addiction.

Public Health Relevance

Project Narrative: The proposed studies will characterize a key molecule that potentially controls a large collection of cocaine-induced, addiction-related neural adaptations. Results from our proposed research will have significant impact on public health because once this `controlling molecule'is defined, therapeutic strategies can be designed accordingly to correct a great number of cocaine-induced cellular adaptations. As such, the findings are expected to lead to novel and effective treatments for human addiction.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Sorensen, Roger
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington State University
Veterinary Sciences
Schools of Veterinary Medicine
United States
Zip Code
Liu, Zheng; Wang, Yao; Cai, Li et al. (2016) Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward. J Neurosci 36:7897-910
Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel et al. (2016) Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron 90:969-83
Wright, William J; Schlüter, Oliver M; Dong, Yan (2016) A Feedforward Inhibitory Circuit Mediated by CB1-Expressing Fast-Spiking Interneurons in the Nucleus Accumbens. Neuropsychopharmacology :
Dong, Yan (2016) Silent Synapse-Based Circuitry Remodeling in Drug Addiction. Int J Neuropsychopharmacol 19:
Ma, Yao-Ying; Wang, Xiusong; Huang, Yanhua et al. (2016) Re-silencing of silent synapses unmasks anti-relapse effects of environmental enrichment. Proc Natl Acad Sci U S A 113:5089-94
Graziane, Nicholas M; Sun, Shichao; Wright, William J et al. (2016) Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci 19:915-25
Neumann, Peter A; Wang, Yicun; Yan, Yijin et al. (2016) Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection. Neuropsychopharmacology 41:2399-410
Chen, Bo; Wang, Yao; Liu, Xiaodong et al. (2015) Sleep Regulates Incubation of Cocaine Craving. J Neurosci 35:13300-10
Huang, Xiaojie; Stodieck, Sophia K; Goetze, Bianka et al. (2015) Progressive maturation of silent synapses governs the duration of a critical period. Proc Natl Acad Sci U S A 112:E3131-40
Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan (2015) Silent Synapses Speak Up: Updates of the Neural Rejuvenation Hypothesis of Drug Addiction. Neuroscientist 21:451-9

Showing the most recent 10 out of 38 publications