Successful treatment of cocaine dependence must involve the prevention of environmentally-induced cocaine relapse. Drug-context-induced cocaine relapse relies on the utilization of long-term memories of context- response-cocaine associations. These associative memories can become labile upon retrieval, and must undergo protein synthesis-dependent re-stabilization (i.e., reconsolidation) in order to be maintained in long- term memory. Abnormally enhanced memory reconsolidation may contribute to intrusive thoughts about cocaine and strong cue reactivity, which are the hallmarks of drug addiction. Hence, manipulations that disrupt cocaine memory reconsolidation or inhibit pathological cocaine memories are of tremendous interest from an addiction treatment perspective. Understanding the putative relationship between pathological cocaine memory reconsolidation and drug relapse is a complex problem that requires a two-part approach: (1) identification of the neurobiological substrates of memory reconsolidation that promote drug-context-induced drug seeking and (2) discovery of pathology within these substrates. Focusing on the first objective, the overarching goal of this project is to elucidate essential, and previously uncharacterized, functional neuroanatomical and cellular mechanisms of memory reconsolidation that facilitate drug-context-induced instrumental cocaine seeking. The project will rely upon our previous work, which has demonstrated that protein synthesis in the basolateral amygdala (BLA) and the functional integrity of the dorsal hippocampus (DH) are necessary for cocaine memory reconsolidation and subsequent drug-context-induced cocaine seeking in rats. However, it is unclear whether there is obligatory interaction between these brain regions. Thus, Aim 1 will be to begin to map the putative cocaine memory reconsolidation circuitry. Experiments will test the hypothesis that sequential information processing by the DH and BLA is required for cocaine memory reconsolidation that facilitates subsequent context-induced cocaine seeking. Additional experiments will evaluate whether the nucleus accumbens core and shell, two efferents of the above brain regions, are a part of this circuitry. Based on our previous work, Aim 2 will center on putative cellular mechanisms of cocaine memory reconsolidation in the BLA. It has been postulated that cocaine-induced neuroplasticity, notably enhanced cAMP- and Ca2+ dependent cellular signaling, may trigger pathological memory reconsolidation. To examine two basic assumptions of this idea, experiments will test the hypothesis that (A) the activity of these pathways in the BLA is necessary for cocaine memory reconsolidation and that (B) mimicking the increase in the activity of these signaling pathways putatively produced by chronic cocaine administration is sufficient to potentiate cocaine memory reconsolidation and context-induced cocaine seeking. In sum, this project will explore the neurobiology of cocaine memory reconsolidation to provide a rationale for future research into pathological cocaine memory reconsolidation and for the development of novel pharmacotherapies for drug addiction.

Public Health Relevance

This project will explore the functional neuroanatomical and cellular mechanisms of memory reconsolidation, which are postulated to stabilize cocaine-related associative memories and facilitate the ability of a drug- predictive context to trigger instrumental cocaine-seeking behavior in a rat model of drug relapse. The project is intended to provide rationale for (A) future research into pathological cocaine memory reconsolidation and (B) for the development of novel and more effective pharmacotherapies for cocaine addiction.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA025646-06
Application #
8830443
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Pilotte, Nancy S
Project Start
2010-01-01
Project End
2015-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
6
Fiscal Year
2015
Total Cost
$296,602
Indirect Cost
$100,177
Name
Washington State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Arguello, Amy A; Wang, Rong; Lyons, Carey M et al. (2017) Role of the agranular insular cortex in contextual control over cocaine-seeking behavior in rats. Psychopharmacology (Berl) 234:2431-2441
Stringfield, S J; Higginbotham, J A; Wang, R et al. (2017) Role of glucocorticoid receptor-mediated mechanisms in cocaine memory enhancement. Neuropharmacology 123:349-358
Arguello, Amy A; Richardson, Ben D; Hall, Jacob L et al. (2017) Role of a Lateral Orbital Frontal Cortex-Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior. Neuropsychopharmacology 42:727-735
Fuchs, Rita A; McLaughlin, Ryan J (2017) Garcinol: A Magic Bullet of Amnesia for Maladaptive Memories? Neuropsychopharmacology 42:581-583
Stringfield, Sierra J; Higginbotham, Jessica A; Fuchs, Rita A (2016) Requisite Role of Basolateral Amygdala Glucocorticoid Receptor Stimulation in Drug Context-Induced Cocaine-Seeking Behavior. Int J Neuropsychopharmacol 19:
Jiang, Zhihua; Wang, Hongyang; Michal, Jennifer J et al. (2016) Genome Wide Sampling Sequencing for SNP Genotyping: Methods, Challenges and Future Development. Int J Biol Sci 12:100-8
Wells, Audrey M; Xie, Xiaohu; Higginbotham, Jessica A et al. (2016) Contribution of an SFK-Mediated Signaling Pathway in the Dorsal Hippocampus to Cocaine-Memory Reconsolidation in Rats. Neuropsychopharmacology 41:675-85
Young, Erica J; Aceti, Massimiliano; Griggs, Erica M et al. (2014) Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 75:96-104
Lasseter, Heather C; Xie, Xiaohu; Arguello, Amy A et al. (2014) Contribution of a mesocorticolimbic subcircuit to drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology 39:660-9
Mitchell, Marci R; Weiss, Virginia G; Ouimet, Dominique J et al. (2014) Intake-dependent effects of cocaine self-administration on impulsive choice in a delay discounting task. Behav Neurosci 128:419-29

Showing the most recent 10 out of 20 publications