We propose to advance a technology that, for the first time, will permit in vivo detection of any neurotransmitter that binds to a G-protein coupled receptor. This includes the monoamines, which play a fundamental role in neuromodulation and a biomedical role in addiction and mental disorders, and peptide transmitters, which are important for the neuroendocrine system and control of vascular tone and blood flow. At present, only limited in vivo assays are available to detect monoamines and peptide neurotransmission. This deficit is a major impediment to understanding normal signaling in the brain. To fill this gap of missing, we introduce Cell-based Neurotransmitter Fluorescent Engineered Reporters (CNiFERs) for the optical measurement of exogenous receptor activity in vivo. A CNiFER is a clonal cell-line that is engineered to express a specific metabotropic receptor that couples to G proteins and a genetically encoded FRET-based Ca2+ sensor that detects changes in intracellular [Ca2+]. Stimulation of the metabotropic receptor leads to elevations in cytosolic [Ca2+], providing a direct and rapid readout of local neurotransmitter activity. CNiFERs are acutely or chronically implanted and fluorescence measured with in vivo two-photon microscopy. This new technology will make it possible to map the spatial patterns of in vivo signaling with up to ~ 100 5M spatial precision and ~ 1 s temporal resolution.

Public Health Relevance

Kleinfeld, David and Slesinger, Paul A. Chemical communication between brain cells underlies the computations performed by a nervous system as animals'locomote and interact with their environment. Yet measurements of the spatial patterns and temporal release of the neuronal transmitters and modulators that mediate this communication have proven to be difficult. Here we propose to develop and implement a new technology, CNiFERs (cell-based neurotransmitter fluorescent engineered reporters), that may be used in conjunction with optical microscopy as a means to detect patterns of neuronal and neurovascular signaling patterns in the brain in vivo.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Microscopic Imaging Study Section (MI)
Program Officer
Pilotte, Nancy S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Arts and Sciences
La Jolla
United States
Zip Code
Muller, Arnaud; Joseph, Victory; Slesinger, Paul A et al. (2014) Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex. Nat Methods 11:1245-52
Munoz, Michaelanne B; Slesinger, Paul A (2014) Sorting nexin 27 regulation of G protein-gated inwardly rectifying K? channels attenuates in vivo cocaine response. Neuron 82:659-69
Lin, John Y; Knutsen, Per Magne; Muller, Arnaud et al. (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499-508
Yamauchi, John G; Nemecz, Ákos; Nguyen, Quoc Thang et al. (2011) Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors. PLoS One 6:e16519